常见 Java 字节码 指令 助记符

转自: 常见java字节码


有时候为了能理解JVM对程序所做的优化等,需要查看程序的字节码,因此知道了解一些常见的指令集很重要!


指令码

助记符

说明

0x00

nop

什么都不做

0x01

aconst_null

将null推送至栈顶

0x02

iconst_m1

将int型-1推送至栈顶

0x03

iconst_0

将int型0推送至栈顶

0x04

iconst_1

将int型1推送至栈顶

0x05

iconst_2

将int型2推送至栈顶

0x06

iconst_3

将int型3推送至栈顶

0x07

iconst_4

将int型4推送至栈顶

0x08

iconst_5

将int型5推送至栈顶

0x09

lconst_0

将long型0推送至栈顶

0x0a

lconst_1

将long型1推送至栈顶

0x0b

fconst_0

将float型0推送至栈顶

0x0c

fconst_1

将float型1推送至栈顶

0x0d

fconst_2

将float型2推送至栈顶

0x0e

dconst_0

将double型0推送至栈顶

0x0f

dconst_1

将double型1推送至栈顶

0x10

bipush

将单字节的常量值(-128~127)推送至栈顶

0x11

sipush

将一个短整型常量值(-32768~32767)推送至栈顶

0x12

ldc

将int, float或String型常量值从常量池中推送至栈顶

0x13

ldc_w

将int, float或String型常量值从常量池中推送至栈顶(宽索引)

0x14

ldc2_w

将long或double型常量值从常量池中推送至栈顶(宽索引)

0x15

iload

将指定的int型本地变量推送至栈顶

0x16

lload

将指定的long型本地变量推送至栈顶

0x17

fload

将指定的float型本地变量推送至栈顶

0x18

dload

将指定的double型本地变量推送至栈顶

0x19

aload

将指定的引用类型本地变量推送至栈顶

0x1a

iload_0

将第一个int型本地变量推送至栈顶

0x1b

iload_1

将第二个int型本地变量推送至栈顶

0x1c

iload_2

将第三个int型本地变量推送至栈顶

0x1d

iload_3

将第四个int型本地变量推送至栈顶

0x1e

lload_0

将第一个long型本地变量推送至栈顶

0x1f

lload_1

将第二个long型本地变量推送至栈顶

0x20

lload_2

将第三个long型本地变量推送至栈顶

0x21

lload_3

将第四个long型本地变量推送至栈顶

0x22

fload_0

将第一个float型本地变量推送至栈顶

0x23

fload_1

将第二个float型本地变量推送至栈顶

0x24

fload_2

将第三个float型本地变量推送至栈顶

0x25

fload_3

将第四个float型本地变量推送至栈顶

0x26

dload_0

将第一个double型本地变量推送至栈顶

0x27

dload_1

将第二个double型本地变量推送至栈顶

0x28

dload_2

将第三个double型本地变量推送至栈顶

0x29

dload_3

将第四个double型本地变量推送至栈顶

0x2a

aload_0

将第一个引用类型本地变量推送至栈顶

0x2b

aload_1

将第二个引用类型本地变量推送至栈顶

0x2c

aload_2

将第三个引用类型本地变量推送至栈顶

0x2d

aload_3

将第四个引用类型本地变量推送至栈顶

0x2e

iaload

将int型数组指定索引的值推送至栈顶

0x2f

laload

将long型数组指定索引的值推送至栈顶

0x30

faload

将float型数组指定索引的值推送至栈顶

0x31

daload

将double型数组指定索引的值推送至栈顶

0x32

aaload

将引用型数组指定索引的值推送至栈顶

0x33

baload

将boolean或byte型数组指定索引的值推送至栈顶

0x34

caload

将char型数组指定索引的值推送至栈顶

0x35

saload

将short型数组指定索引的值推送至栈顶

0x36

istore

将栈顶int型数值存入指定本地变量

0x37

lstore

将栈顶long型数值存入指定本地变量

0x38

fstore

将栈顶float型数值存入指定本地变量

0x39

dstore

将栈顶double型数值存入指定本地变量

0x3a

astore

将栈顶引用型数值存入指定本地变量

0x3b

istore_0

将栈顶int型数值存入第一个本地变量

0x3c

istore_1

将栈顶int型数值存入第二个本地变量

0x3d

istore_2

将栈顶int型数值存入第三个本地变量

0x3e

istore_3

将栈顶int型数值存入第四个本地变量

0x3f

lstore_0

将栈顶long型数值存入第一个本地变量

0x40

lstore_1

将栈顶long型数值存入第二个本地变量

0x41

lstore_2

将栈顶long型数值存入第三个本地变量

0x42

lstore_3

将栈顶long型数值存入第四个本地变量

0x43

fstore_0

将栈顶float型数值存入第一个本地变量

0x44

fstore_1

将栈顶float型数值存入第二个本地变量

0x45

fstore_2

将栈顶float型数值存入第三个本地变量

0x46

fstore_3

将栈顶float型数值存入第四个本地变量

0x47

dstore_0

将栈顶double型数值存入第一个本地变量

0x48

dstore_1

将栈顶double型数值存入第二个本地变量

0x49

dstore_2

将栈顶double型数值存入第三个本地变量

0x4a

dstore_3

将栈顶double型数值存入第四个本地变量

0x4b

astore_0

将栈顶引用型数值存入第一个本地变量

0x4c

astore_1

将栈顶引用型数值存入第二个本地变量

0x4d

astore_2

将栈顶引用型数值存入第三个本地变量

0x4e

astore_3

将栈顶引用型数值存入第四个本地变量

0x4f

iastore

将栈顶int型数值存入指定数组的指定索引位置

0x50

lastore

将栈顶long型数值存入指定数组的指定索引位置

0x51

fastore

将栈顶float型数值存入指定数组的指定索引位置

0x52

dastore

将栈顶double型数值存入指定数组的指定索引位置

0x53

aastore

将栈顶引用型数值存入指定数组的指定索引位置

0x54

bastore

将栈顶boolean或byte型数值存入指定数组的指定索引位置

0x55

castore

将栈顶char型数值存入指定数组的指定索引位置

0x56

sastore

将栈顶short型数值存入指定数组的指定索引位置

0x57

pop

将栈顶数值弹出 (数值不能是long或double类型的)

0x58

pop2

将栈顶的一个(long或double类型的)或两个数值弹出(其它)

0x59

dup

复制栈顶数值并将复制值压入栈顶

0x5a

dup_x1

复制栈顶数值并将两个复制值压入栈顶

0x5b

dup_x2

复制栈顶数值并将三个(或两个)复制值压入栈顶

0x5c

dup2

复制栈顶一个(long或double类型的)或两个(其它)数值并将复制值压入栈顶

0x5d

dup2_x1

<待补充>

0x5e

dup2_x2

<待补充>

0x5f

swap

将栈最顶端的两个数值互换(数值不能是long或double类型的)

0x60

iadd

将栈顶两int型数值相加并将结果压入栈顶

0x61

ladd

将栈顶两long型数值相加并将结果压入栈顶

0x62

fadd

将栈顶两float型数值相加并将结果压入栈顶

0x63

dadd

将栈顶两double型数值相加并将结果压入栈顶

0x64

isub

将栈顶两int型数值相减并将结果压入栈顶

0x65

lsub

将栈顶两long型数值相减并将结果压入栈顶

0x66

fsub

将栈顶两float型数值相减并将结果压入栈顶

0x67

dsub

将栈顶两double型数值相减并将结果压入栈顶

0x68

imul

将栈顶两int型数值相乘并将结果压入栈顶

0x69

lmul

将栈顶两long型数值相乘并将结果压入栈顶

0x6a

fmul

将栈顶两float型数值相乘并将结果压入栈顶

0x6b

dmul

将栈顶两double型数值相乘并将结果压入栈顶

0x6c

idiv

将栈顶两int型数值相除并将结果压入栈顶

0x6d

ldiv

将栈顶两long型数值相除并将结果压入栈顶

0x6e

fdiv

将栈顶两float型数值相除并将结果压入栈顶

0x6f

ddiv

将栈顶两double型数值相除并将结果压入栈顶

0x70

irem

将栈顶两int型数值作取模运算并将结果压入栈顶

0x71

lrem

将栈顶两long型数值作取模运算并将结果压入栈顶

0x72

frem

将栈顶两float型数值作取模运算并将结果压入栈顶

0x73

drem

将栈顶两double型数值作取模运算并将结果压入栈顶

0x74

ineg

将栈顶int型数值取负并将结果压入栈顶

0x75

lneg

将栈顶long型数值取负并将结果压入栈顶

0x76

fneg

将栈顶float型数值取负并将结果压入栈顶

0x77

dneg

将栈顶double型数值取负并将结果压入栈顶

0x78

ishl

将int型数值左移位指定位数并将结果压入栈顶

0x79

lshl

将long型数值左移位指定位数并将结果压入栈顶

0x7a

ishr

将int型数值右(符号)移位指定位数并将结果压入栈顶

0x7b

lshr

将long型数值右(符号)移位指定位数并将结果压入栈顶

0x7c

iushr

将int型数值右(无符号)移位指定位数并将结果压入栈顶

0x7d

lushr

将long型数值右(无符号)移位指定位数并将结果压入栈顶

0x7e

iand

将栈顶两int型数值作“按位与”并将结果压入栈顶

0x7f

land

将栈顶两long型数值作“按位与”并将结果压入栈顶

0x80

ior

将栈顶两int型数值作“按位或”并将结果压入栈顶

0x81

lor

将栈顶两long型数值作“按位或”并将结果压入栈顶

0x82

ixor

将栈顶两int型数值作“按位异或”并将结果压入栈顶

0x83

lxor

将栈顶两long型数值作“按位异或”并将结果压入栈顶

0x84

iinc

将指定int型变量增加指定值(i++, i--, i+=2)

0x85

i2l

将栈顶int型数值强制转换成long型数值并将结果压入栈顶

0x86

i2f

将栈顶int型数值强制转换成float型数值并将结果压入栈顶

0x87

i2d

将栈顶int型数值强制转换成double型数值并将结果压入栈顶

0x88

l2i

将栈顶long型数值强制转换成int型数值并将结果压入栈顶

0x89

l2f

将栈顶long型数值强制转换成float型数值并将结果压入栈顶

0x8a

l2d

将栈顶long型数值强制转换成double型数值并将结果压入栈顶

0x8b

f2i

将栈顶float型数值强制转换成int型数值并将结果压入栈顶

0x8c

f2l

将栈顶float型数值强制转换成long型数值并将结果压入栈顶

0x8d

f2d

将栈顶float型数值强制转换成double型数值并将结果压入栈顶

0x8e

d2i

将栈顶double型数值强制转换成int型数值并将结果压入栈顶

0x8f

d2l

将栈顶double型数值强制转换成long型数值并将结果压入栈顶

0x90

d2f

将栈顶double型数值强制转换成float型数值并将结果压入栈顶

0x91

i2b

将栈顶int型数值强制转换成byte型数值并将结果压入栈顶

0x92

i2c

将栈顶int型数值强制转换成char型数值并将结果压入栈顶

0x93

i2s

将栈顶int型数值强制转换成short型数值并将结果压入栈顶

0x94

lcmp

比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶

0x95

fcmpl

比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶

0x96

fcmpg

比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶

0x97

dcmpl

比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶

0x98

dcmpg

比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶

0x99

ifeq

当栈顶int型数值等于0时跳转

0x9a

ifne

当栈顶int型数值不等于0时跳转

0x9b

iflt

当栈顶int型数值小于0时跳转

0x9c

ifge

当栈顶int型数值大于等于0时跳转

0x9d

ifgt

当栈顶int型数值大于0时跳转

0x9e

ifle

当栈顶int型数值小于等于0时跳转

0x9f

if_icmpeq

比较栈顶两int型数值大小,当结果等于0时跳转

0xa0

if_icmpne

比较栈顶两int型数值大小,当结果不等于0时跳转

0xa1

if_icmplt

比较栈顶两int型数值大小,当结果小于0时跳转

0xa2

if_icmpge

比较栈顶两int型数值大小,当结果大于等于0时跳转

0xa3

if_icmpgt

比较栈顶两int型数值大小,当结果大于0时跳转

0xa4

if_icmple

比较栈顶两int型数值大小,当结果小于等于0时跳转

0xa5

if_acmpeq

比较栈顶两引用型数值,当结果相等时跳转

0xa6

if_acmpne

比较栈顶两引用型数值,当结果不相等时跳转

0xa7

goto

无条件跳转

0xa8

jsr

跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶

0xa9

ret

返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)

0xaa

tableswitch

用于switch条件跳转,case值连续(可变长度指令)

0xab

lookupswitch

用于switch条件跳转,case值不连续(可变长度指令)

0xac

ireturn

从当前方法返回int

0xad

lreturn

从当前方法返回long

0xae

freturn

从当前方法返回float

0xaf

dreturn

从当前方法返回double

0xb0

areturn

从当前方法返回对象引用

0xb1

return

从当前方法返回void

0xb2

getstatic

获取指定类的静态域,并将其值压入栈顶

0xb3

putstatic

为指定的类的静态域赋值

0xb4

getfield

获取指定类的实例域,并将其值压入栈顶

0xb5

putfield

为指定的类的实例域赋值

0xb6

invokevirtual

调用实例方法

0xb7

invokespecial

调用超类构造方法,实例初始化方法,私有方法

0xb8

invokestatic

调用静态方法

0xb9

invokeinterface

调用接口方法

0xba

--

 

0xbb

new

创建一个对象,并将其引用值压入栈顶

0xbc

newarray

创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶

0xbd

anewarray

创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶

0xbe

arraylength

获得数组的长度值并压入栈顶

0xbf

athrow

将栈顶的异常抛出

0xc0

checkcast

检验类型转换,检验未通过将抛出ClassCastException

0xc1

instanceof

检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶

0xc2

monitorenter

获得对象的锁,用于同步方法或同步块

0xc3

monitorexit

释放对象的锁,用于同步方法或同步块

0xc4

wide

<待补充>

0xc5

multianewarray

创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必须包含各维度的长度值),并将其引用值压入栈顶

0xc6

ifnull

为null时跳转

0xc7

ifnonnull

不为null时跳转

0xc8

goto_w

无条件跳转(宽索引)

0xc9

jsr_w

跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/331511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

等价关系和等价类_确定Java等价性的新时代?

等价关系和等价类几个月前&#xff0c;我读了一篇题为“确定Java等价性的新时代&#xff1f;”的博客文章。 这在某种程度上与我当时在我那令人沮丧的副项目Java :: Geci中开发的内容非常吻合 。 我建议您暂停阅读&#xff0c;阅读原始文章&#xff0c;然后再返回此处&#xff…

数据结构(一)之链表

一、链表链表是一种物理存储单元上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的。 链表由一系列结点&#xff08;链表中每一个元素称为结点&#xff09;组成&#xff0c;结点可以在运行时动态生成。每个结点包括两个部分&#xff…

高级数据结构实现——自顶向下伸展树

【0】README 1&#xff09; 本文部分内容转自 数据结构与算法分析&#xff0c;旨在理解 高级数据结构实现——自顶向下伸展树 的基础知识&#xff1b; 2&#xff09; 源代码部分思想借鉴了数据结构与算法分析&#xff0c;有一点干货原创代码&#xff0c;for original source …

测试框架 如何测试私有方法_高效的企业测试–测试框架(5/6)

测试框架 如何测试私有方法本系列文章的这一部分将介绍测试框架以及我在何时以及是否应用它们方面的想法和经验。 关于测试框架的想法 我对大多数测试框架不太满意的原因是&#xff0c;按照我的观点&#xff0c;它们大多增加了语法上的便利性和便利性&#xff0c;但是本质上并…

数据结构(二)之链表反转

一、链表反转 1、反转非递归算法 2、反转递归算法 链表结点&#xff1a; package cn.edu.scau.mk;/**** author MK* param <T>*/ public class Node<T> {private T data;private Node<T> next null;public Node(T data) {this.data data;}public T getD…

web安全测试视频课程专题_有关有效企业测试的视频课程

web安全测试视频课程专题我已经制作了一些有关有效企业测试的视频。 在实际项目中&#xff0c;我仍然认为该主题非常重要。 这是我在测试Enterprise Java项目中的经验以及一些示例。 1.介绍和有效的Maven使用 在此视频中&#xff0c;我将介绍测试过程&#xff0c;并演示如何使…

网络——获取Web数

【0】README 0.1&#xff09; 本文描述转自 core java volume 2&#xff0c; 旨在理解 “网络——获取Web数” 的基础知识&#xff1b; 0.2&#xff09; for source code , please visit https://github.com/pacosonTang/core-java-volume/blob/master/coreJavaAdvanced/chap…

数据结构(三)之单链表反向查找

一、反向查找单链表 1、简单查找 先遍历获取单链表单长度n&#xff0c;然后通过计算得到倒数第k个元素的下标为n-k&#xff0c;然后查找下标为n-k的元素。 2、优化查找 先找到下标为k的元素为记录点p1&#xff0c;然后设置新的记录点p2的下标从0开始&#xff0c;同时遍历两个…

java使用:: 表达式_Java 13:切换表达式的增强功能

java使用:: 表达式您可能还记得我以前的文章&#xff0c;在Java 12中&#xff0c;传统的switch语句得到了增强&#xff0c;因此可以用作表达式。 在Java 13中&#xff0c;对该功能进行了进一步的更改 。 break语句不能再返回值。 相反&#xff0c;您必须使用新的yield语句&…

网络——Base64Encode(转:自定义Base64编码器——Base64Encode)

【0】README 0.1&#xff09; 本文source code 转自 core java volume 2 &#xff0c; 旨在了解 如何定义一个 编码器&#xff0c; 如Base64Encode &#xff1b; 0.2&#xff09;注意&#xff1a; 区别自定义的 Base64Encode 和 java.util.Base64 编码器 0.3&#xff09;fo…

数据结构(四)之单链表查找中间结点

一、查找单链表中间结点 1、简单查找 先遍历获取单链表单长度n&#xff0c;然后通过计算得到中间结点为n/2&#xff0c;然后查找下标为n/2的元素。 2、优化查找 先设置记录点fast、slow&#xff0c;下标均从0开始&#xff0c;fast走两步&#xff0c;slow走一步&#xff0c;同…

java面试常见面试问题_Java面试准备:15个Java面试问题

java面试常见面试问题并非所有的访谈都将重点放在算法和数据结构上—通常&#xff0c;访谈通常只侧重于您声称是专家的语言或技术。在此类访谈中&#xff0c;通常没有任何“陷阱”问题&#xff0c;而是它们要求您利用内存和使用该语言的经验–换句话说&#xff0c;它们测试您对…

网络——提交表单数据(post方式)

【0】README 1&#xff09; 本文文字描述 转自 core java volume 2 &#xff0c; 旨在理解 网络——提交表单数据 的基础知识 &#xff1b; 2&#xff09; for source code, please visit https://github.com/pacosonTang/core-java-volume/tree/master/coreJavaAdvanced/cha…

html5实现最智能大气的公司年会抽奖(源码)

文章目录 1.设计来源1.1 主界面1.3 数据配置1.4 抽奖效果1.5 中奖效果 2.效果和源码配置2.1 动态效果2.2 员工信息配置2.3 奖品信息配置2.4 抽奖音效配置2.5 源代码2.6 项目结构 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/…

Linux入门(一)之权限指令系统管理

一、权限指令 普通用户需要使用sudo或者root超级管理员可以执行权限指令。 二、linux系统init程序 &#xff08;1&#xff09;运行init程序&#xff08;引用runoob.com&#xff09; init 进程是系统所有进程的起点&#xff0c;你可以把它比拟成系统所有进程的老祖宗&#xf…

java jsf_使用Java和JSF构建一个简单的CRUD应用

java jsf使用Okta的身份管理平台轻松部署您的应用程序 使用Okta的API在几分钟之内即可对任何应用程序中的用户进行身份验证&#xff0c;管理和保护。 今天尝试Okta。 JavaServer Faces&#xff08;JSF&#xff09;是用于构建Web应用程序的Java框架&#xff0c;其中心是作为用户…

网络——发送email(一个简单荔枝)

【0】README 1&#xff09; 本文文字描述 转自 core java volume 2 &#xff0c; 旨在理解 网络——发送email 的基础知识 &#xff1b; 2&#xff09; for souce code , please visit https://github.com/pacosonTang/core-java-volume/tree/master/coreJavaAdvanced/chapte…

算法七之希尔排序

一、希尔排序 &#xff08;1&#xff09;简介 希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序&#xff0c;是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL&#xff0e;Shell于1959年提出而得名。希尔排序是把记录按下标的一定增量…

cuba 平台_CUBA平台:TypeScript SDK和REST API

cuba 平台在本文中&#xff0c;我们将讨论已存在很长时间但尚未广为人知的CUBA平台的功能- 前端SDK生成器 &#xff0c;并了解它如何与CUBA的REST API插件一起使用 。 Java JavaScript –网络婚姻 仅八年前&#xff0c;我们Java开发人员在我们的Web应用程序中使用JavaScript作…

算法八之归并排序

一、归并排序原理 归并排序&#xff08;MERGE-SORT&#xff09;是建立在归并操作上的一种有效的排序算法,该算法是采用分治法&#xff08;Divide and Conquer&#xff09;的一个非常典型的应用。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序…