并集查经典(转发)

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x)                                                                                                         //查找根节点

    int r=x;

    while ( pre[r ] != r )                                                                                              //返回根节点 r

          r=pre[r ];

 

    int i=x , j ;

    while( i != r )                                                                                                        //路径压缩

    {

         j = pre[ i ]; // 在改变上级之前用临时变量  j 记录下他的值 

         pre[ i ]= r ; //把上级改为根节点

         i=j;

    }

    return r ;

}

 

 

void join(int x,int y)                                                                                                    //判断x y是否连通,

                                                                                             //如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

{

    int fx=find(x),fy=find(y);

    if(fx!=fy)

        pre[fx ]=fy;

}

 

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)                                                                  //查找我(x)的掌门

{

    int r=x;                                                                       //委托 r 去找掌门

    while (pre[r ]!=r)                                                        //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)

    r=pre[r ] ;                                                                   // r 就接着找他的上级,直到找到掌门为止。

    return  r ;                                                                   //掌门驾到~~~

}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)                                                                   //我想让虚竹和周芷若做朋友

{

    int fx=find(x),fy=find(y);                                                       //虚竹的老大是玄慈,芷若MM的老大是灭绝

    if(fx!=fy)                                                                               //玄慈和灭绝显然不是同一个人

    pre[fx ]=fy;                                                                           //方丈只好委委屈屈地当了师太的手下啦

}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

 

 

 

hdu1232

[cpp] view plain

  1. #include<iostream>  
  2. using namespace std;  
  3.   
  4. int  pre[1050];  
  5. bool t[1050];               //t 用于标记独立块的根结点  
  6.   
  7. int Find(int x)  
  8. {  
  9.     int r=x;  
  10.     while(r!=pre[r])  
  11.         r=pre[r];  
  12.       
  13.     int i=x,j;  
  14.     while(pre[i]!=r)  
  15.     {  
  16.         j=pre[i];  
  17.         pre[i]=r;  
  18.         i=j;  
  19.     }  
  20.     return r;  
  21. }  
  22.   
  23. void mix(int x,int y)  
  24. {  
  25.     int fx=Find(x),fy=Find(y);  
  26.     if(fx!=fy)  
  27.     {  
  28.         pre[fy]=fx;  
  29.     }  
  30. }   
  31.   
  32. int main()  
  33. {  
  34.     int N,M,a,b,i,j,ans;  
  35.     while(scanf("%d%d",&N,&M)&&N)  
  36.     {  
  37.         for(i=1;i<=N;i++)          //初始化   
  38.             pre[i]=i;  
  39.           
  40.         for(i=1;i<=M;i++)          //吸收并整理数据   
  41.         {  
  42.             scanf("%d%d",&a,&b);  
  43.             mix(a,b);  
  44.         }  
  45.           
  46.           
  47.         memset(t,0,sizeof(t));  
  48.         for(i=1;i<=N;i++)          //标记根结点  
  49.         {  
  50.             t[Find(i)]=1;  
  51.         }  
  52.         for(ans=0,i=1;i<=N;i++)  
  53.             if(t[i])  
  54.                 ans++;  
  55.                   
  56.         printf("%d\n",ans-1);  
  57.           
  58.     }  
  59.     return 0;  
  60. }//dellaserss  


以下为原文附的代码:

 

回到开头提出的问题,我的代码如下:

#include int pre[1000 ];

int find(int x)

{

    int r=x;

   while (pre[r ]!=r)

   r=pre[r ];

   int i=x; int j;

   while(i!=r)

   {

       j=pre[i ];

       pre[i ]=r;

       i=j;

   }

   return r;

}

int main()

{

   int n,m,p1,p2,i,total,f1,f2;

   while(scanf("%d",&n) && n)         //读入n,如果n为0,结束

   {                                                    //刚开始的时候,有n个城镇,一条路都没有 //那么要修n-1条路才能把它们连起来

       total=n-1;

       //每个点互相独立,自成一个集合,从1编号到n //所以每个点的上级都是自己

       for(i=1;i<=n;i++) { pre[i ]=i; }                //共有m条路

       scanf("%d",&m); while(m--)

       { //下面这段代码,其实就是join函数,只是稍作改动以适应题目要求

           //每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了

           scanf("%d %d",&p1,&p2);

           f1=find(p1);

           f2=find(p2);

               //如果是不连通的,那么把这两个分支连起来

               //分支的总数就减少了1,还需建的路也就减了1

           if(f1!=f2)

            {

               pre[f2 ]=f1;

               total--;

           }

           //如果两点已经连通了,那么这条路只是在图上增加了一个环 //对连通性没有任何影响,无视掉

       }

//最后输出还要修的路条数

       printf("%d\n",total);

   }

   return 0;

}

https://blog.csdn.net/a2459956664/article/details/50614096

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/330419.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于es查询dsl的filter与must,term与match的区别

【1】创建es7 索引 put localhost:9200/pdi_cust &#xff0c; 注意 PUB_CUST_LABEL 字段分词了。 es7 不支持type &#xff0c;所以 无需指定type。 { "mappings" :{ "properties":{"RCRD_ID":{"type":"keyword"…

高级Java必看的10本书

转载自 高级Java必看的10本书 1、深入理解Java虚拟机&#xff1a;JVM高级特性与最佳实践 本书共分为五大部分&#xff0c;围绕内存管理、执行子系统、程序编译与优化、高效并发等核心主题对JVM进行了全面而深入的分析&#xff0c;深刻揭示了JVM的工作原理。 2、从Paxos到Zookee…

ES嵌套聚合

【1】 // dsl {"_source":["RCRD_ID", "STATE", "BUSI_CODE"], "query":{"bool":{"filter":[{"term":{"STATE":"PDOS"} }, {"nested":{"path":…

进阶Java架构师必看的15本书

转载自 进阶Java架构师必看的15本书 1、大型网站技术架构&#xff1a;核心原理与案例分析 本书通过梳理大型网站技术发展历程&#xff0c;剖析大型网站技术架构模式&#xff0c;深入讲述大型互联网架构设计的核心原理&#xff0c;并通过一组典型网站技术架构设计案例&#xff0…

HDU2612(BFS算法)

Problem Descrption Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. Leave Ningbo one year, yifenfei have many people to meet. Especially a good friend Merceki. Yifenfei’s home is at the countryside, but Merceki’s home is in…

es 嵌套类型聚合

【1】分组后求均值聚合 //dsl {"_source":["RCRD_ID", "STATE", "BUSI_CODE"], "query":{"bool":{"filter":[{"term":{"STATE":"PDOS"} }]} }, "aggs"…

2017年,Java程序猿10本经典好书推荐

1、Java 8实战 本书全面介绍了Java 8 这个里程碑版本的新特性&#xff0c;包括Lambdas、流和函数式编程。有了函数式的编程特性&#xff0c;可以让代码更简洁&#xff0c;同时也能自动化地利用多核硬件。全书分四个部分&#xff1a;基础知识、函数式数据处理、高效Java 8 编程和…

es嵌套聚合dsl(求均值,求和)

【1】根据客户号分组后求均值和求和 // dsl {"_source":["RCRD_ID", "STATE", "BUSI_CODE"], "query":{"bool":{"filter":[{"term":{"STATE":"PDOS"} }]} }, &…

字符串拼接+和concat的区别

转载自 字符串拼接和concat的区别和concat都可以用来拼接字符串&#xff0c;但在使用上有什么区别呢&#xff0c;先来看看这个例子。 public static void main(String[] args) {// example1String str1 "s1";System.out.println(str1 100);//s1100System.out.prin…

thinking-in-java(21)并发2

think-in-java 并发前半部分&#xff08;并发1&#xff09;参见&#xff1a; https://blog.csdn.net/PacosonSWJTU/article/details/104855730 【21.4.3】中断 1、Thread类包含 interrupt方法&#xff0c;可以终止被阻塞的任务。这个方法将设置线程的中断状态。 如果一个线程…

HDU1176(DP)

Problem Description 都说天上不会掉馅饼&#xff0c;但有一天gameboy正走在回家的小径上&#xff0c;忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了&#xff0c;这馅饼别处都不掉&#xff0c;就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了&am…

Java趣味分享:try/finally

转载自 Java趣味分享&#xff1a;try/finally考虑以下四个测试方法&#xff0c;它们会输出什么&#xff1f;public class Test {public static void main(String[] args) {System.out.println(test1());System.out.println(test2());System.out.println(test3());System.out.pr…

(转)ThreadPoolExecutor最佳实践--如何选择队列

转自&#xff1a; https://blog.hufeifei.cn/2018/08/12/Java/ThreadPoolExecutor%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5--%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E9%98%9F%E5%88%97/ 前一篇文章《如何选择线程数》讲了如何决定线程池中线程个数&#xff0c;这篇文章讨论“如何…

HDU1576(欧几里得算法)

Problem Descption 要求(A/B)%9973&#xff0c;但由于A很大&#xff0c;我们只给出n(nA%9973)(我们给定的A必能被B整除&#xff0c;且gcd(B,9973) 1)。 Input 数据的第一行是一个T&#xff0c;表示有T组数据。 每组数据有两个数n(0 < n < 9973)和B(1 < B < 10^…

为什么byte取值-128~127??

转载自 为什么byte取值-128~127??java设计byte类型为1个字节&#xff0c;1个字节占8位&#xff0c;即8bit&#xff0c;这是常识。另外&#xff0c;计算机系统中是用补码来存储的&#xff0c;首位为0表示正数&#xff0c;首位为1表示负数&#xff0c;所以有以下结论&#xff1…

(转)threadPoolExecutor 中的 shutdown() 、 shutdownNow() 、 awaitTermination() 的用法和区别

最近在看并发编程&#xff0c;在使用到ThreadPoolExecutor时&#xff0c;对它的三个关闭方法&#xff08;shutdown()、shutdownNow()、awaitTermination()&#xff09;产生了兴趣&#xff0c;同时又感到迷惑。查了些资料&#xff0c;自己写了测试代码&#xff0c;总算有了个比较…

HDU2049(错列排序)

国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的: 首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排; 然后,让各位新郎寻找自己的新娘.每人只准找一个,…

厉害了,Servlet3的异步处理机制

转载自 厉害了&#xff0c;Servlet3的异步处理机制Servlet3发布好几年了&#xff0c;又有多少人知道它的新特性呢&#xff1f;下面简单介绍下。 主要增加了以下特性&#xff1a; 1、异步处理支持 2、可插性支持 3、注解支持&#xff0c;零配置&#xff0c;可不用配置web.xml ..…

(转)Elasticsearch 聚合查询、桶聚合、管道聚合及复合查询

转自&#xff1a; https://blog.csdn.net/zx711166/article/details/81906881 聚合查询 聚合是一种基于查询条件对数据进行分桶、计算的方法。 聚合可以嵌套&#xff0c;由此可以组合复杂的操作&#xff08;Bucketing 聚合可以包含 sub-aggregation&#xff09;。 聚合的三种…

3种常见的Class级别的错误

转载自 3种常见的Class级别的错误ClassNotFoundException 很明显&#xff0c;这个错误是 找不到类异常&#xff0c;即在当前classpath路径下找不到这个类。 ClassNotFoundException继承了Exception&#xff0c;是必须捕获的异常&#xff0c;所以这个异常一般发生在显示加载类的…