前言
最近我们公司的部分.NET Core的项目接入了Jaeger,也算是稍微完善了一下.NET团队的技术栈。
至于为什么选择Jaeger而不是Skywalking,这个问题我只能回答,大佬们说了算。
前段时间也在CSharpCorner写过一篇类似的介绍
Exploring Distributed Tracing Using ASP.NET Core And Jaeger。
下面回到正题,我们先看一下Jaeger的简介
Jaeger的简单介绍

Jaeger是Uber开源的一个分布式追踪的工具,主要为基于微服务的分布式系统提供监测和故障诊断。包含了下面的内容
- Distributed context propagation 
- Distributed transaction monitoring 
- Root cause analysis 
- Service dependency analysis 
- Performance / latency optimization 
下面就通过一个简单的例子来体验一下。
示例
在这个示例的话,我们只用了jaegertracing/all-in-one这个docker的镜像来搭建,因为是本地的开发测试环境,不需要搭建额外的存储,这个感觉还是比较贴心的。
我们会用到两个主要的nuget包
- Jaeger这个是官方的client
- OpenTracing.Contrib.NetCore.Unofficial这个是对.NET Core探针的处理,从opentracing-contrib/csharp-netcore这个项目移植过来的(这个项目并不活跃,只能自己做扩展)
然后我们会建两个API的项目,一个是AService,一个是BService。
其中BService会提供一个接口,从缓存中读数据,如果读不到就通过EF Core去从sqlite中读,然后写入缓存,最后再返回结果。
AService 会通过HttpClient去调用BService的接口,从而会形成调用链。
开始之前,我们先把docker-compose.yml配置一下
version: '3.4'
services:
  aservice:
    image: ${DOCKER_REGISTRY-}aservice
    build:
      context: .
      dockerfile: AService/Dockerfile
    ports:
      - "9898:80"  
    depends_on:
      - jagerservice
      - bservice
    networks:  
      backend:
  bservice:
    image: ${DOCKER_REGISTRY-}bservice
    build:
      context: .
      dockerfile: BService/Dockerfile
    ports:
      - "9899:80"
    depends_on:
      - jagerservice    
    networks:  
      backend:
  jagerservice:
    image: jaegertracing/all-in-one:latest
    environment:
      - COLLECTOR_ZIPKIN_HTTP_PORT=9411 
    ports:
      - "5775:5775/udp"
      - "6831:6831/udp"
      - "6832:6832/udp"
      - "5778:5778"
      - "16686:16686"
      - "14268:14268"
      - "9411:9411"
    networks:  
      backend:
networks:  
  backend:      
    driver: bridge然后就在两个项目的Startup加入下面的一些配置,主要是和Jaeger相关的。
public void ConfigureServices(IServiceCollection services)
{
    services.AddOpenTracing();
    services.AddSingleton<ITracer>(serviceProvider =>
    {
string serviceName = serviceProvider.GetRequiredService<IHostingEnvironment>().ApplicationName;
var loggerFactory = serviceProvider.GetRequiredService<ILoggerFactory>();
var sampler = new ConstSampler(sample: true);
var reporter = new RemoteReporter.Builder()
                .WithLoggerFactory(loggerFactory)
                .WithSender(new UdpSender("jagerservice", 6831, 0))
                .Build();
var tracer = new Tracer.Builder(serviceName)
            .WithLoggerFactory(loggerFactory)
            .WithSampler(sampler)
            .WithReporter(reporter)
            .Build();
        GlobalTracer.Register(tracer);
return tracer;
    });
}这里需要注意的是我们要根据情况来选择sampler,演示这里用了最简单的ConstSampler。
回到BService这个项目,我们添加SQLite和EasyCaching的相关支持。
public void ConfigureServices(IServiceCollection services)
{
    services
        .AddEntityFrameworkSqlite()
        .AddDbContext<BDbContext>(options =>
        {
var connectionStringBuilder = new SqliteConnectionStringBuilder
            {
                DataSource = ":memory:",
                Mode = SqliteOpenMode.Memory,
                Cache = SqliteCacheMode.Shared
            };
var connection = new SqliteConnection(connectionStringBuilder.ConnectionString);
            connection.Open();
            connection.EnableExtensions(true);
            options.UseSqlite(connection);
        });
    services.AddEasyCaching(options =>
    {
        options.UseInMemory("m1");
    });
}然后控制器上面就比较简单了。
[HttpGet]
public async Task<IActionResult> GetAsync()
{
var provider = _providerFactory.GetCachingProvider("m1");
var obj = await provider.GetAsync("mykey", async () => await _dbContext.DemoObjs.ToListAsync(), TimeSpan.FromSeconds(30));
return Ok(obj);
}AService就是通过HttpClient去调用上面的这个接口即可。
[HttpGet]
public async Task<string> GetAsync()
{
var res = await GetDemoAsync();
return res;
}
private async Task<string> GetDemoAsync()
{
var client = _clientFactory.CreateClient();
var request = new HttpRequestMessage
    {
        Method = HttpMethod.Get,
        RequestUri = new Uri($"http://bservice/api/values")
    };
var response = await client.SendAsync(request);
    response.EnsureSuccessStatusCode();
var body = await response.Content.ReadAsStringAsync();
return body;
}到这里的话,代码这块是ok了,下面就来看看效果。
先通过http://localhost:9898/api/values/访问几次AService
大概能得到一个这样的结果

然后去Jaeger的界面上我们可以看到,两个服务已经注册上来了。

选A,B其中一个去搜索,就可以看到下面的结果

这个就最外层,能看到这些请求一些宏观的信息。
我们选界面上最后一个,也就是第一个请求,进去看看细节

从上面这个图大概也能看出来,做了一些什么操作,请求来到AService,它就发起了HTTP请求到BService,BService则是先通过EasyCaching去取缓存,显然缓存中没数据,它就去读数据库了。
和另外的请求对比一下,可以发现是少了查数据库这一步操作的。这也是为什么上面的是10个span,而下面的才8个。

再来看看两个请求的对比图。

上图中那些红色和绿色的块就是两个请求的差异点了。
回去看看其他细节,可以发现类似下面的内容

有很多日志相关的东西,这些东西在这里可能没有太多实际的作用,我们可以通过调整日志的级别来不让它写入到Jaeger中。
或者是通过下面的方法来过滤
services.AddOpenTracing(new System.Collections.Generic.Dictionary<string,LogLevel>
{
    {"AService", LogLevel.Information}
});最后就是依赖图了。

写在最后
虽说Jaeger用起来挺简单的,但是也是有点美中不足的,不过这个锅不应该是Jaeger来背的,主要还是很多我们常用的库没有直接的支持Diagnostic,所以能监控到的东西还是略少。
不过在github发现了ClrProfiler.Trace这个项目,可以通过clrprofiler来解决上面的问题。
最后是本文的示例代码 https://github.com/catcherwong-archive/2019/tree/master/04/JaegerDemo
原文地址:https://www.cnblogs.com/catcher1994/p/10662999.html
.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com 