【大语言模型】Transformer原理以及运行机制

目录

参考资料


Transformer 是一种序列到序列(Sequence-to-Sequence)的模型,用于处理自然语言处理任务。它是由谷歌公司提出的一种基于注意力机制的神经网络模型,被广泛应用于机器翻译、问答系统、文本摘要、对话生成等任务。

Transformer 模型由编码器和解码器两部分组成。编码器将输入序列转换为一系列表示,解码器根据这些表示生成输出序列。在编码器和解码器中,都使用了多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。

Transformer 的核心思想是使用自注意力机制来处理输入序列中的相关性问题,而不是像传统的循环神经网络(Recurrent Neural Network)或卷积神经网络(Convolutional Neural Network)那样使用固定的窗口来处理输入序列。自注意力机制可以捕捉输入序列中所有位置之间的相互依赖关系,从而更好地理解输入序列的语义和结构信息。

在编码器中,首先通过一个嵌入层将输入序列中的每个单词转换为一个向量表示。然后,每个向量表示被输入到一个堆叠的自注意力层中,以便进行表示学习和特征提取。自注意力层将每个输入向量与序列中的其他所有向量进行比较,并计算出每个向量相对于其他向量的重要性权重。这些权重用于对每个向量进行加权平均,得到一个新的向量表示,其中包含了整个序列的语义信息。

在解码器中,首先使用一个嵌入层将目标语言中的每个单词转换为一个向量表示。然后,每个向量表示被输入到一个堆叠的自注意力层和编码器-解码器注意力层中。自注意力层和编码器-解码器注意力层的作用和编码器中的一样,都是用于特征提取和表示学习。最后,经过一系列的全连接层和softmax函数,得到输出序列中每个位置上的概率分布,从而生成最终的翻译结果。

Transformer 模型具有并行计算能力和高效性能,在处理长序列任务中表现优异。并且由于其结构简洁,易于调整和优化,因此被广泛应用于自然语言处理领域。

当谈到Transformer模型的原理和运行机制时,以下是更详细的解释:

  1. 输入表示:

    • 输入序列通常由单词或字符组成。每个单词或字符都会通过一个嵌入层进行编码,将其转换为一个固定维度的向量表示。这个向量表示称为嵌入向量(embedding vector)。嵌入向量可以通过随机初始化或使用预训练的词向量模型(如Word2Vec或GloVe)来获得。
  2. 位置编码:

    • Transformer模型没有使用循环神经网络(RNN)或卷积神经网络(CNN),因此它需要一种方式来处理序列中的顺序信息。为了引入位置信息,Transformer使用了位置编码。
    • 位置编码是一个与输入序列长度相同的矩阵,用于表示每个单词在序列中的位置。它可以是一个固定的矩阵,也可以是可学习的参数。常见的位置编码方式是使用三角函数,将位置信息编码为一个维度和嵌入向量维度相同的向量。
  3. 自注意力机制:

    • 自注意力机制是Transformer模型的核心组成部分,它使模型能够在计算每个输入单词的表示时,能够考虑到序列中其他所有单词之间的关系。
    • 自注意力机制通过计算每个单词与序列中其他所有单词之间的相关性得分(注意力权重),来对输入序列进行加权平均处理。这样,每个单词都能够获得与它相关联的上下文信息。
    • 自注意力的计算过程如下:
      1. 首先,通过对输入的嵌入向量进行线性变换,得到查询(query)、键(key)和值(value)的向量表示。这些向量是通过学习得到的可训练参数。
      2. 接下来,计算查询向量与键向量之间的相似度得分,这可以使用点积操作或其他方法完成。
      3. 将得分除以一个缩放因子,以控制相似度的范围。
      4. 对得分应用softmax函数,以获得注意力权重。这些权重表示了每个输入单词与其他单词之间的关联度。
      5. 将注意力权重与值向量相乘并加权求和,得到加权平均的结果作为自注意力的输出。
  4. 编码器:

    • Transformer模型由多个编码器层堆叠而成。每个编码器层包含两个子层:多头自注意力层和前馈神经网络层。
    • 在多头自注意力层中,输入序列会经过多个并行的自注意力头(注意力子层)。每个自注意力头都能够学习到不同类型和层次的相关性信息。多个头的输出会被拼接在一起,并通过线性变换得到最终的自注意力层输出。
    • 在前馈神经网络层中,自注意力层的输出会经过一个两次线性变换和激活函数(如ReLU)的堆叠。这个前馈神经网络层能够对特征进行进一步的非线性变换和映射。
  5. 解码器:

    • Transformer模型还包括一个解码器,用于生成输出序列。解码器的结构与编码器类似,但在多头自注意力层之前还包括一个编码器-解码器注意力层。
    • 在编码器-解码器注意力层中,解码器的每个位置都会与编码器的输出进行注意力计算。这样可以使解码器能够关注输入序列中不同位置的相关信息,从而生成合理的输出序列。
  6. 位置编码和注意力掩码:

    • 在每个自注意力层中,位置编码和注意力掩码会被添加到输入向量中。这样可以将位置信息引入模型,帮助模型学习输入序列中单词的顺序关系。注意力掩码用于屏蔽未来位置的信息,以防止模型在生成输出时看到未来的内容。
  7. 输出层:

    • 最后,通过一个线性变换和softmax函数,将解码器的输出转换为每个位置上的概率分布。这样就可以根据概率分布来生成最终的输出序列。

总结:Transformer模型通过自注意力机制和堆叠的多层网络,能够学习到全局依赖关系和上下文信息,从而提高了自然语言处理任务的性能和效果。它具有并行计算的能力,在处理长序列任务时表现出色,并且可以通过调整模型的深度和宽度来适应不同的任务和数据集。

当谈到Transformer模型的原理和运行机制时,以下是更详细的解释:

  1. 自注意力机制(Self-Attention Mechanism):

    • 自注意力机制是Transformer模型的核心,它允许模型在处理序列数据时,同时考虑到序列中所有位置之间的关系。自注意力机制通过计算每个位置对应的注意力权重,将输入序列中的每个元素与其他所有元素进行交互。
    • 在计算自注意力权重时,首先将输入序列的嵌入向量分别映射为查询(query)、键(key)和值(value)向量。然后,计算查询向量和键向量之间的相似度得分,通常使用点积操作。得分经过缩放(除以特征维度的平方根)和softmax归一化处理,得到每个位置对其他位置的注意力权重。最后,将注意力权重与值向量相乘并求和,得到每个位置的自注意力输出。
  2. 多头注意力(Multi-Head Attention):

    • 为了增加模型对不同位置关系的建模能力,Transformer模型使用多头注意力机制。多头注意力允许模型学习多组不同的注意力权重,从而捕捉不同层次和类型的关联信息。具体来说,输入序列的嵌入向量会经过多个并行的注意力头,每个头学习到一种不同的注意力表示。最后,多头注意力的输出会被拼接在一起,并通过线性变换得到最终的自注意力层输出。
  3. 位置编码(Positional Encoding):

    • 由于Transformer模型不包含循环结构或卷积操作,因此需要一种方式来引入序列中元素的位置信息。位置编码是一种用于表示元素位置的技术,通常是一个与嵌入向量维度相同的矩阵。常见的位置编码方法包括使用三角函数或学习得到的参数,用于将位置信息融入到输入序列的表示中。
  4. 编码器-解码器结构(Encoder-Decoder Architecture):

    • Transformer模型通常用于序列到序列(Sequence-to-Sequence)任务,如机器翻译。在这种情况下,模型包括编码器和解码器两部分。编码器用于将输入序列编码成一种语义表示,而解码器则在此基础上生成目标序列。编码器和解码器都由多个层堆叠而成,每个层都包含多头自注意力和前馈神经网络子层。
    • 在编码器中,输入序列的嵌入向量首先经过位置编码,然后经过多个编码器层的处理。每个编码器层包括多头自注意力和前馈神经网络子层,以及残差连接和层归一化操作。
    • 在解码器中,目标序列的嵌入向量首先经过位置编码,然后经过多个解码器层的处理。每个解码器层包括多头自注意力、编码器-解码器注意力和前馈神经网络子层,以及残差连接和层归一化操作。
  5. 前馈神经网络(Feed-Forward Neural Network):

    • Transformer模型的每个编码器和解码器层都包含一个前馈神经网络子层。前馈神经网络对自注意力层的输出进行非线性变换和映射,通常包括两个线性变换和激活函数(如ReLU)。
    • 前馈神经网络可以通过学习非线性特征表示来增强模型的表达能力,进一步捕捉序列中的语义信息。
  6. 缩放点积注意力(Scaled Dot-Product Attention):

    • 在计算自注意力权重时,通常会对得分进行缩放,以控制相似度的范围和稳定计算。这种方式称为缩放点积注意力,能够使模型更容易训练和收敛。
    • 缩放点积注意力的计算过程包括点积操作、缩放和softmax归一化处理。
  7. 注意力掩码(Attention Masking):

    • 在处理序列数据时,为了防止模型在预测未来时刻时观察到未来信息,可以使用注意力掩码。注意力掩码通常是一个与输入序列长度相同的矩阵,用于在计算注意力权重时屏蔽未来位置的信息。
    • 注意力掩码可以通过将未来位置对应的元素设置为负无穷大,使得在softmax归一化时这些位置的注意力权重为0,从而实现对未来信息的屏蔽。

总结:Transformer模型通过自注意力机制、多头注意力和编码器-解码器结构,能够有效地处理序列数据,特别适用于自然语言处理任务,如机器翻译和文本生成。这些关键概念构成了Transformer模型的核心,并为其在NLP领域取得成功提供了坚实基础。通过多层堆叠的编码器和解码器,Transformer模型能够捕捉序列中的长距离依赖关系和语义信息,从而提高了序列建模的能力。

参考资料

详解Transformer模型及相关的数学原理_transformer model-CSDN博客

Transformer原理以及运行机制_人工智能transformer原理-CSDN博客AIGC:阿里开源大模型通义千问部署与实战_AI医疗-华为开发者联盟HarmonyOS专区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯2020年5月青少组Python程序设计国赛真题

1、 上边是一个算法流程图,最后输出的b的值是() A.377 B.987 C.1597 D.2584 2、 3、如果整个整数X本身是完全平方数,同时它的每一位数字也都是完全平方数我们就称X 是完美平方数。前几个完美平方数是0、1、4、9、49、100、144......即第1个完美平方数是0,第2个是 1,第3个…

Hadoop入门学习笔记——一、VMware准备Linux虚拟机

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 一、VMware准备Linux虚拟机1.1. VMware安装Linux虚拟机1.…

连续执行函数和alert与focus死循环事件

1.innerText value的值会根据输入的改变而改变DOM树,但是innerHTML和innerText有一种效果就是赋值的时候是标签下所有替代了,但是取值的时候还是html文件下,标签下的所有。如果赋值就是标签子都被这个代替。内部变量就是这个,没赋…

WEB 3D技术 three.js 通过lil-gui 控制x y z轴数值 操作分组 设置布尔值控制 颜色材质控制

上文 WEB 3D技术 three.js 通过lil-gui管理公共事件中 我们用 lil-gui 处理了一下基础事件和按钮的管理 那么 本文 我们来具体说说它能做的其他事 我们先将基础代码改成这样 import ./style.css import * as THREE from "three"; //引入lil-gui import { GUI } fro…

安装Kubernetes1.23、kubesphere3.4、若依项目自动打包部署到K8S记录

1.安装kubernetes1.23详细教程 kubernetes(k8s)集群超级详细超全安装部署手册 - 知乎 2.安装rancher动态存储 kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-storage.yaml3.安装kubesphere3.4 准备工作 您…

UE和Android互相调用

ue和android互调 这两种方式都是在UE打包的Android工程之上进行的。 一、首先是UE打包Android,勾选下面这项 如果有多个场景需要添加场景 工程文件在这个路径下 然后可以通过Android Studio打开,选择gradle打开 先运行一下,看看是否可以发布…

360勒索病毒:了解最新变种.360,以及如何保护您的数据

导言: 随着科技的飞速发展,网络安全威胁也在不断演变,.360 勒索病毒成为近期备受关注的一种恶意软件。本文91数据恢复将介绍如何恢复被.360 勒索病毒加密的数据文件,并提供一些建议,帮助你预防这种威胁。 如果您在面对…

032 - STM32学习笔记 - TIM基本定时器(一) - 定时器基本知识

032 - STM32学习笔记 - TIM定时器(一) - 基本定时器知识 这节开始学习一下TIM定时器功能,从字面意思上理解,定时器的基本功能就是用来定时,与定时器相结合,可以实现一些周期性的数据发送、采集等功能&#…

DMR与DPMR以及DMR的分层

数字移动无线电 (DMR) 和数字专用移动无线电 (dPMR) 是数字对讲机中使用的流行通信技术。 与传统模拟无线电相比,这两种技术都提供了改进的音频质量、增强的安全功能和增加的网络容量。 但是,DMR 和 dPMR 无线电之间使用的技术存在重大差异&#xff…

阿里云公有云平台

1. 请简要介绍一下公有云平台的基本概念和特点。 公有云是一种云计算模型,其中服务器、网络和存储资源等IT基础架构以虚拟资源的形式提供,并且可以通过互联网进行访问。这些资源是由第三方提供商共享并提供给用户的,包括计算、存储、网络等。…

并发和并行的区别

并发(Concurrency)和并行(Parallelism)是计算机领域中两个重要的概念,它们描述了任务执行的不同方式。以下是它们的区别: 并发:并发是指多个任务在同一时间段内交替执行。虽然这些任务可能同时存…

2023年12月GESP Python五级编程题真题解析

【五级编程题1】 【试题名称】:小杨的幸运数 【问题描述】 小杨认为,所有大于等于a的完全平方数都是他的超级幸运数。 小杨还认为,所有超级幸运数的倍数都是他的幸运数。自然地,小杨的所有超级幸运数也都是幸运数。 对于一个…

MongoDB安装部署

二、安装部署 2.1 下载 下载地址:MongoDB Enterprise Server Download | MongoDB 当前最新版本6.0.9,5.0.9对Mac m1需要centos 8.2版本。选择docker安装。 2.2 docker-ce安装 # 安装docker # 默认repo源没有docker-ce安装包,需要新的rep…

Android 13 - Media框架(26)- OMXNodeInstance(三)

上一节我们了解了OMXNodeInstance中的端口定义,这一节我们一起来学习ACodec、OMXNode、OMX 组件使用的 buffer 到底是怎么分配出来的,以及如何关联起来的。(我们只会去了解 graphic buffer的创建、input bytebuffer的创建、secure buffer的创…

Spring框架@RequestMapping完整指南

Spring Boot 提供了一组新的 REST 请求注释,可以简化构建 RESTful Web 服务的过程。 在Spring 4.3之前,我们使用RequestMapping注解来实现RESTful的URL映射: RequestMapping(value "/hello", method RequestMethod.GET) public…

ObjectMapper的常用方法 (对象和JSON数据之间的转换)

<dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.13.0</version> <!-- 请根据实际情况选择合适的版本 --> </dependency> ObjectMapper类是Ja…

免费更新UltraNews v2.8.0 已注册 – Laravel报纸,博客多语言系统,支持AI作家,内容生成器脚本

UltraNews v2.8.0 已注册 – Laravel报纸&#xff0c;博客多语言系统&#xff0c;支持AI作家&#xff0c;内容生成器脚本 一、概述 在网络内容创作与管理领域&#xff0c;UltraNews v2.8.0以其高度现代化和多功能性而独树一帜。这是一个基于Laravel框架构建的报纸、博客多语言…

实习课知识整理4:点击某个商品如何跳转到并展示出商品详情页

项目情景&#xff1a;当我们点击某个商品时&#xff0c;我们需要查看商品的具体的信息并进行购买的操作 简单理解以下就是&#xff0c;当我们点击一个url链接时&#xff0c;该链接需要携带一个参数到后端&#xff0c;一般设为商品的Id&#xff0c;然后后端通过Id从数据库中查找…

怎么卸载macOS上的爱思助手如何卸载macOS上的logitech g hub,如何卸载顽固macOS应用

1.在App Store里下载Cleaner One Pro &#xff08;注意&#xff0c;不需要订阅付费&#xff01;&#xff01;&#xff01;白嫖基础功能就完全够了&#xff01;&#xff01;&#xff01;&#xff09; 2.运行软件&#xff0c;在左侧目录中选择“应用程序管理”&#xff0c;然后点…

C++初阶——类和对象

呀哈喽&#xff0c;我是结衣 C入门之后&#xff0c;我们就进入了C的初阶的学习了&#xff0c;在了解类和对象之前&#xff0c;我们还是先了解&#xff0c;面向过程和面向对象的初步认识。 在本篇博客中&#xff0c;我们要讲的内容有 1.面向过程和面向对象初步认识 2.类的引入 3…