使用矢量数据库打造全新的搜索引擎

在技术层面上,矢量数据库采用了一种名为“矢量索引”的技术,这是一种组织和搜索矢量数据的方法,可以快速找到相似矢量。其中关键的一环是“距离函数”的概念,它可以衡量两个矢量的相似程度。

1.矢量数据库简介

矢量数据库是专门设计用来高效处理矢量数据的数据库。什么是矢量数据呢?矢量数据代表多维空间中的数据点,是一种用数学方法来定义现实世界信息的方式。

比如说,您有一组图片,每张图片都可以在高维空间中表示为一个矢量,其中每个维度都与图片的某些特征(如颜色、形状或纹理)相关。通过比较这些矢量,我们可以找到相似的图片。

这种能力非常关键,因为它可用来进行相似性搜索——一种寻找相似物品而不是完全相同复制品的搜索方式。对于推荐系统和机器学习等许多领域来说,这都是一个重大的变革。

2.解析矢量数据库

在技术层面上,矢量数据库采用了一种名为“矢量索引”的技术,这是一种组织和搜索矢量数据的方法,可以快速找到相似矢量。其中关键的一环是“距离函数”的概念,它可以衡量两个矢量的相似程度。

当您寻找与给定矢量相似的矢量时,数据库并不会将给定矢量与数据库中的每个矢量进行比较。相反,它使用矢量索引快速定位到可能相似的一小部分矢量。这个特性使搜索变得更快、更高效。

3.矢量数据库的实际应用

矢量数据库在实际应用中的优势:

  • 推荐系统:许多受欢迎的网站和应用都使用矢量数据库向您推荐喜欢的节目和产品。他们将项目(如电影或产品)和用户表示为矢量,然后利用项目矢量和用户矢量之间的相似性来预测用户可能喜欢的项目。
  • 图像和视频搜索:矢量数据库非常适合图像类比这种应用,它们使图像或视频搜索系统能够根据视觉相似性而不仅仅是文本标签来查找相似的图像或视频。
  • 语义搜索:语义搜索是一种高级的方式,可以理解查询的含义,不仅仅是特定的单词。例如,如果您搜索“可爱猫咪的图片”,语义搜索系统可能还会向您展示可爱的小猫的图片,即使“小猫”这个词不在您的查询中。矢量数据库可以将文档、查询和概念表示为矢量,然后利用矢量相似性来查找相关结果。

4.将文本转换为矢量

当我们谈论将查询和文章转换为矢量时,实际上我们想要的是将人类可读的文本转换为机器可以理解和执行的格式,即矢量。在这种情况下,矢量实质上是个数字列表,捕捉了文本的本质或含义。这个过程通常被称为“文本嵌入”或“词嵌入”。

4.1 应用于我们的情况:

对于我们的应用程序,我们需要将文章和用户查询都转换为矢量。我们来看看如何完成此过程:

  • 选择嵌入算法:假设我们使用Word2Vec,这是一种可以接收文本并输出矢量的算法。Word2Vec通过分析单词在文本中出现的上下文,并以这样一种方式分配矢量,使共享相似上下文的单词被分配相似的矢量。
  • 预处理文本:在我们将文本输入Word2Vec之前,我们需要对其进行一些清理。这通常涉及将所有文本转换为小写,删除标点符号和特殊字符,有时甚至删除意义不大的的常用词(如 "和"、"的"、"是 "等)(称为“stop words”)。
  • 将清理后的文本输入到算法中:文本整理好后,就将其输入到Word2Vec中。输出将是矢量,我们可以将其用于我们的矢量数据库。

4.2 案例:

假设我们有一篇标题为“The Best Chocolate Chip Cookie Recipe”的博客文章。清理后,它可能看起来像“best chocolate chip cookie recipe”。然后,使用Word2Vec,我们将每个单词转换为矢量。为简单起见,假设我们的矢量只有两个维度。 “best”的矢量可能看起来像[0.25,-0.1],“chocolate”可能是[0.75,0.8],“chip”可能是[-0.6,0.5],“cookie”可能是[0.4,-0.2],“recipe”可能是[-0.1,0.65]。

在这种情况下,我们将这些矢量的平均值表示整个文章,然后将其用于我们的矢量数据库。用户查询也会经过相同的过程,它们的矢量将用于搜索矢量数据库。

这是一个简化的解释,实际过程涉及更复杂的数学和更大的矢量,但这提供了如何将查询和文章转换为矢量的基本理解。一旦您了解了基本概念,就有很多库可以为您完成繁重的工作!

在我们的Java Spring Boot应用程序中,可以使用像DL4J(Deeplearning4j)这样的库来帮助我们进行文本到矢量的转换。虽然使用 DL4J 进行文本到矢量的转换需要一些时间和精力去掌握,但一旦掌握,DL4J 就是数据管理工具包中非常强大的一个工具。

现在,我们将这一步添加到我们的Spring Boot应用程序中,使用Deeplearning4j库将文本转换为矢量。以下是如何使用它创建一个Word2Vec模型的示例:

首先,请将DL4J库添加到您的pom.xml中:

<dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>1.0.0-beta7</version>
</dependency>

以下代码显示了如何构建Word2Vec模型:

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CommonPreprocessor;
import org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import org.deeplearning4j.models.word2vec.Word2Vec;public Word2Vec createWord2VecModel(String filePath) {SentenceIterator iter = new BasicLineIterator(filePath);TokenizerFactory t = new DefaultTokenizerFactory();t.setTokenPreProcessor(new CommonPreprocessor());Word2Vec vec = new Word2Vec.Builder().minWordFrequency(5).iterations(1).layerSize(100).seed(42).windowSize(5).iterate(iter).tokenizerFactory(t).build();vec.fit();return vec;
}

以上是构建Word2Vec模型的示例代码,下面是如何将文本转换为矢量的示例代码:

import org.nd4j.linalg.api.ndarray.INDArray;
public INDArray textToVector(Word2Vec word2VecModel, String text) {TokenizerFactory t = new DefaultTokenizerFactory();t.setTokenPreProcessor(new CommonPreprocessor());List<String> tokens = t.create(text).getTokens();INDArray vector = word2VecModel.getWordVectorMatrixNormalized(tokens.get(0));for (int i = 1; i < tokens.size(); i++) {vector.addi(word2VecModel.getWordVectorMatrixNormalized(tokens.get(i)));}vector.divi(tokens.size());return vector;
}

将INDArray对象转换为双精度列表的代码如下:

public List<Double> toDoubleVector(INDArray vector) {return Arrays.stream(vector.toDoubleVector()).boxed().collect(Collectors.toList());
}

5.在Spring Boot应用程序中实现矢量数据库

让我们从理论转向实践,看看如何将矢量数据库集成到Spring Boot应用程序中。在本示例中,我们将使用Vespa,这是一个开源的矢量数据库,它在语义搜索方面表现非常出色,因此备受关注和推崇。

首先,您需要在pom.xml中的Maven依赖项中添加Vespa客户端:

<dependency><groupId>com.yahoo.vespa</groupId><artifactId>vespa-feed-client</artifactId><version>8.91.4</version>
</dependency>

然后,您将创建一个与Vespa数据库交互的VespaClient类。

public class VespaClient {private FeedClient feedClient;public VespaClient(String endpoint) {this.feedClient = FeedClientFactory.create(new FeedParams.Builder().build(), endpoint);}public CompletableFuture<Result> indexDocument(String documentId, Map<String, Object> fields) {DocumentId docId = new DocumentId("namespace", "documentType", documentId);Document document = new Document(docId, fields);return feedClient.send(document);}// 其他Vespa客户端方法在此处...
}

您还将拥有一个BlogPost类,该类将表示您的数据。

public class BlogPost {private String id;private String title;private String content;// Getters、setters和其他方法在此处...
}

要索引文章,我们将把BlogPost转换为Vespa友好格式,该格式是一个Map<String, Object>,其中键是字段名称,值是字段值。您可能会使用一个方法来执行此转换。

public CompletableFuture<Result> indexBlogPost(BlogPost post) {Map<String, Object> fields = new HashMap<>();fields.put("id", post.getId());fields.put("title", post.getTitle());fields.put("content", post.getContent());// 根据需要包含其他字段...return indexDocument(post.getId(), fields);
}

使用Vespa,您可以进行最近邻搜索,以查找与给定查询类似的文章。我们假设您有一种方法可以将查询和文章转换为矢量。

public CompletableFuture<SearchResult> searchSimilarBlogPosts(String query) {List<Double> queryVector = convertQueryToVector(query);Query request = new Query.Builder("namespace", "documentType").setYql("select * from sources * where ([{" +"\"targetNumHits\": 10," +"\"algorithm\": \"euclidean\"," +"\"pivot\": " + queryVector.toString() +"}])" +" output distance").build();return feedClient.search(request);
}

现在您已经将矢量数据库集成到Spring Boot应用程序中,并准备使用矢量数据库的强大功能来改善搜索功能!

6.总结

矢量数据库已经成为一种处理搜索功能的新方式,提供了独特的优势,特别是在处理“相似性”概念至关重要的数据时。通过了解这项技术的基本原理并学习如何在实际场景中应用它,您可以发掘其潜力,从而彻底改变处理数据的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/17194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

抖音短视频seo矩阵系统源码开发部署技术分享

抖音短视频的SEO矩阵系统是一个非常重要的部分&#xff0c;它可以帮助视频更好地被搜索引擎识别和推荐。以下是一些关于开发和部署抖音短视频SEO矩阵系统的技术分享&#xff1a; 一、 抖音短视频SEO矩阵系统的技术分享&#xff1a; 关键词研究&#xff1a;在开发抖音短视频SEO矩…

限流式保护器在古建筑电气火灾中的应用

安科瑞 华楠 【摘要】针对文物古建筑本身火灾危险性大&#xff0c;并且其内部电气问题较多&#xff0c;增加了火灾危险性的特点&#xff0c;提出了预防电气火灾的措施。 【关键词】古建筑&#xff1b;电气防火&#xff1b;限流式保护器&#xff1b; 文物古建筑是中华民族历史文…

纯nginx制作文件上传下载服务器

什么是webdav webdav 是一组超文本传输协议的技术集合&#xff0c;有利于用户键协同编辑和管理存储在万维网服务器文档。同时来说就是&#xff0c;webdav可以让用户直接存储&#xff0c;下载&#xff0c;编辑文件&#xff0c;操作文件需要进行用户认证 基于nginx快速搭建webdav…

《MySQL 实战 45 讲》课程学习笔记(一)

基础架构&#xff1a;一条 SQL 查询语句是如何执行的&#xff1f; MySQL 的基本架构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层 包括连接器、查询缓存、分析器、优化器、执行器&#xff1b;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&…

idea模块的pom.xml被划横线,不识别的解决办法

目录 问题&#xff1a; 解决办法&#xff1a; 1.打开设置 2. 取消勾选 3.点击确认 4.解决 问题提出&#xff1a; 写shi山的过程中&#xff0c;给模块取错名字了&#xff0c;改名的时候不知道点到了什么&#xff0c;一个模块的pom.xml变成灰色了&#xff0…

记RT-Thread rt_timer_start函数的问题

我使用的RT-Thread版本为4.0.3。 我看了5.0.1的代码&#xff0c;此问已经被修复。 在4.0.3版本中的rt_timer_start函数源码如下&#xff1a; rt_err_t rt_timer_start(rt_timer_t timer) {unsigned int row_lvl;rt_list_t *timer_list;register rt_base_t level;rt_list_t *r…

Rust调试【三】

Local Debug: vscode CodeLLDB extension memory leak analysis: Rust and Valgrind FFI Memory wrapping: Foreign Function Interface FFI panic handling: Panic handling

排序算法(冒泡排序、选择排序、插入排序、希尔排序、堆排序、快速排序、归并排序、计数排序)

&#x1f355;博客主页&#xff1a;️自信不孤单 &#x1f36c;文章专栏&#xff1a;数据结构与算法 &#x1f35a;代码仓库&#xff1a;破浪晓梦 &#x1f36d;欢迎关注&#xff1a;欢迎大家点赞收藏关注 文章目录 &#x1f353;冒泡排序概念算法步骤动图演示代码 &#x1f34…

JS关于多张图片上传显示报错不影响后面图片上传方法

关于多张图片上传或者下载显示报错后会程序会终止执行&#xff0c;从而影响后面图片上传。 解决方法&#xff1a; /*能正常访问的图片*/ const url https://2vimg.hitv.com/100/2308/0109/5359/dqKIZ7d4cnHL/81Vu0c.jpg?x-oss-processimage/format,webp; /*不能正常下载的图…

谷歌: 安卓补丁漏洞让 N-days 与 0-days 同样危险

近日&#xff0c;谷歌发布了年度零日漏洞报告&#xff0c;展示了 2022 年的野外漏洞统计数据&#xff0c;并强调了 Android 平台中长期存在的问题&#xff0c;该问题在很长一段时间内提高了已披露漏洞的价值和使用。 更具体地说&#xff0c;谷歌的报告强调了安卓系统中的 &quo…

Java阻塞队列

什么阻塞队列 阻塞队列&#xff08;BlockingQueue&#xff09;是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。 支持阻塞的插入方法&#xff1a;意思是当队列满时&#xff0c;队列会阻塞插入元素的线程&#xff0c;直到队列不满。支持阻塞的移除方…

vue项目开发常用工具类

防止重复造轮子&#xff0c;将经常用的函数进行记录&#xff0c;也参考网上的并一起进行记录&#xff0c;后续会持续更新常用到的函数工具类方法&#x1f609;&#x1f609; /** 验证手机号是否合格* true--说明合格*/ export function isPhone(phoneStr) {let myreg /^[1][3,…

艺人商务代言:避雷策略与成功合作之道

避免在艺人商务代言中遇到风险&#xff0c;是每个企业和艺人都应该高度重视的问题。代言活动是一种有效的市场营销手段&#xff0c;可以为企业带来广泛的曝光和销售增长&#xff0c;同时也能让艺人获得额外的收入和更高的知名度。然而&#xff0c;不慎选择错误的代言合作可能带…

Vue3--->组合式API与Pinia

目录 使用create-vue搭建 1、使用create-vue创建项目 2、项目目录和关键文件 组合式API 1、组合式API - setup选项 2、组合式API - reactive和ref函数 3、组合式API - computed 4、组合式API - watch 1、基础使用 - 侦听单个数据 2、基础使用 - 侦听多个数据 3、immediate&…

基于 FFmpeg 的跨平台视频播放器简明教程(七):使用多线程解码视频和音频

系列文章目录 基于 FFmpeg 的跨平台视频播放器简明教程&#xff08;一&#xff09;&#xff1a;FFMPEG Conan 环境集成基于 FFmpeg 的跨平台视频播放器简明教程&#xff08;二&#xff09;&#xff1a;基础知识和解封装&#xff08;demux&#xff09;基于 FFmpeg 的跨平台视频…

leetcode每日一题Day2——344. 反转字符串

✨博主&#xff1a;命运之光 &#x1f984;专栏&#xff1a;算法修炼之练气篇&#xff08;C\C版&#xff09; &#x1f353;专栏&#xff1a;算法修炼之筑基篇&#xff08;C\C版&#xff09; &#x1f433;专栏&#xff1a;算法修炼之练气篇&#xff08;Python版&#xff09; …

【面试题】与通义千问的芯片前端设计模拟面试归纳

这里是尼德兰的喵芯片设计相关文章,欢迎您的访问! 如果文章对您有所帮助,期待您的点赞收藏! 让我们一起为芯片前端全栈工程师而努力! 前言 两个小时,与chatGPT进行了一场数字IC前端设计岗的面试_尼德兰的喵的博客-CSDN博客 和GPT-3.5的回答可以对比品尝,味道更好。 模…

Jenkins pipeline 脚本语言学习支持

1 引言 Groovy是用于Java虚拟机的一种敏捷的动态语言&#xff0c;它是一种成熟的面向对象编程语言&#xff0c;既可以用于面向对象编程&#xff0c;又可以用作纯粹的脚本语言。 使用该种语言不必编写过多的代码&#xff0c;同时又具有闭包和动态语言中的其他特性。 Groovy是一…

光学基础知识

本文介绍光学基础知识。 1.可见光光谱 可见光光谱范围&#xff1a;400-700nm 组成可见光的各种颜色光光谱如下表&#xff1a; 名称波长&#xff08;nm&#xff09;频率&#xff08;MHz&#xff09;紫光400~435790-680蓝光450~480680-620青光480~490600-620绿光500~560600-5…

用Python写了一个下载网站所有内容的软件,可见即可下

目录标题 前言环境介绍:代码实战获取数据获取视频采集弹幕采集评论 GUI部分尾语 前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 今天我们分享一个用Python写下载视频弹幕评论的代码。 顺便把这些写成GUI&#xff0c;把这些功能放到一起让朋友用起来更方便~ 环境介绍: py…