Python教程73:Pandas中一维数组Series学习

创建一维数据类型Series
data=None 要转化为Series的数据(也可用dict直接设置行索引) 若是标量则必须设置索引,该值会重复,来匹配索引的长度
index=None 设置行索引
dtype=None 设置数据类型(使用numpy数据类型)
name=None 设置Series的name属性
copy=False 不复制 (当data为ndarray,Series时生效,否则复制)
fastpath=False

# @Author : 小红牛
# 微信公众号:wdPython

s.values ndarray 返回s的值
s.name str 返回s的name(可更改)
s.index Index 返回s的索引(可更改)
s.index.name str 返回s的索引的name属性(可更改)
s.index.is_unique bool 判断s的索引值是否唯一
s.dtype np.dtype 返回s的数据类型
s.ftype str 返回s是稀疏的还是稠密的
s.shape tuple 返回s的形状 (n,)
s.nbytes int 返回s的字节数
s.ndim int 返回s的纬度数 1
s.size int 返回s的元素数量
s.strides tuple 返回s中数据的步幅, 即指针移动一次的字节数 (单元素字节数,)
s.itemsize int 返回s中元素的字节数
s.base
s.T Series 返回s的转置, 但s是一维的所以还是它本身
s.memory_usage() int s的内存使用情况(字节)
index=True 索引是否参与计算
deep=False 是否计算s引用的对象的内存使用情况
s.astype() Series 转换数据类型
dtype np.dtype
copy=True 是否复制基层数据
errors=‘raise’ ‘raise’: 转换失败则报错
‘ignore’: 转换失败则保留原数据类型
s.copy() Series 拷贝s
deep=True True: 浅拷贝; False: 引用对象
s.isnull() Series 返回一个大小相同值为bool的对象, 指示值是否为null
s.notnull() Series 返回一个大小相同值为bool的对象, 指示值是否不为null
索引, 迭代
s.get() 返回s中对应索引的值, 若索引不存在则返回None或指定值
key 想要获取的值的索引
default=None 若索引不存在返回的值
s.at[i] 标量 基于标签的访问器
s.iat[n] 标量 基于位置的访问器
s.ix[i or n] 或 s[] 基于标签和位置的访问器, 支持.loc和.iloc中的任何输入
s.loc[i] [i] 基于单个标签访问
[i1, i2, i3] 基于多个标签访问
[i1:i2] 返回i1与i2之间的元素(包括边界)
[[bool]] 传入bool数组, 返回True位置对应的那些值
s.iloc[n] [n] 基于单个位置访问
[n1, n2, n3] 基于多个位置访问
[n1:n2] 类似list
[[bool]] 传入bool数组, 返回True位置对应的那些值
s.iter() Iterator 返回一个基于值的迭代器
s.iteritems Iterator 返回一个(索引, 值)的迭代器
运算
s.add() Series 加法运算. 同s+s2
other Series或标量
level=None
fill_value=None 使用此值填充缺失值
s.sub() Series 减法运算. 同s-s2
s.mul() Series 乘法运算. 同ss2
s.div() Series 浮点除法运算. 同s/s2
s.truediv() Series 浮点除法运算. 同s/s2
s.floordiv() Series 整数除法运算. 同s//s2
s.mod() Series 取模(余)运算. 同s%s2
s.pow() Series 幂运算. 同s**s2
s.radd() Series 右侧加法. 同s2+s
s.rsub() Series 右侧减法. 同s2-s
s.rmul() Series 右侧乘法. 同s2
s
s.rdiv() Series 右侧浮点除法. 同s2/s
s.rtruediv() Series 右侧浮点除法. 同s2/s
s.rfloordiv() Series 右侧整数除法. 同s2//s
s.rmod() Series 右侧取余运算. 同s2%s
s.rpow() Series 右侧幂运算. 同s2**s
s.lt() Series 同 s < s2
s.gt() Series 同 s > s2
s.le() Series 同 s <= s2
s.ge() Series 同 s >= s2
s.ne() Series 同 s != s2
s.eq() Series 同 s == s2
s.combine() Series 使用自定义函数运算
other Series或标量
func 传入两个参数, 返回一个参数的函数
fill_value=nan 当其中一个s缺少索引是, 使用此值填充后进行运算
s.combine_first() Series other 求索引的并集, 优先保留左侧的值
s.round() Series decimals=0 四舍五入为给定的小数位数
np.exp(s) Series 支持大多数numpy方法
功能应用
s.apply()

Series

对s中所有值执行某一操作
func s中每个值要执行的操作(函数)
convert_dtype=T 尝试自动适配dtype, 若为False, 则保留为dtype=object
args=() 除了值之外, 还要传递给函数的位置参数
**kwds 传递给函数的关键字参数
s.map() Series 映射
arg fun: 传入value返回值作为输出
dict或Series: 映射key(index)->value
na_action=None ‘ignore’: s中nan值将不会受到映射函数的影响

计算/描述统计
s.abs() Series 返回所有值的绝对值
s.all() bool s中是否全为True(非bool值默认会转换)
s.any() bool s中是否存在True(非bool值默认会转换)
s.autocorr() float Lag-N自相关
lag=1 执行自相关之前应用的滞后数

重构索引 / 选择 / 标签操作
s.align() tuple 更新索引, 并以(new_s, new_s2)的形式返回, 缺失以nan补全
other Series
join=‘outer’ ‘outer’: 新索引为s与s2的并集
‘inner’: 新索引为s与s2的交集
‘left’ : 新索引为s的索引
‘right’: 新索引为s2的索引
axis=None Series不要更改此参数
level=None
copy=True 是否返回新对象
fill_value=None 缺失值使用的值, 默认np.NaN
method=None
limit=None
fill_axis=0
broadcast_ axis=None
s.drop() Series 删除对应标签并返回新对象
labels 单一标签或list_like
axis=0
level=None
inplace=False 若为True则修改s本身而不是新生成一个对象
error=‘raise’ ‘ignore’ :忽略错误
s.drop_duplicates() Series 删除重复项
keep ‘first’: 仅保留第一次出现的副本(默认)
‘last’: 删除重复项, 但最后一项除外
False: 删除所有重复项
inplace=False 若为True则修改s本身而不是新生成一个对象
s.duplicated() Series 返回是否是重复项的bool表示结果
keep ‘first’: 除第一次出现外, 标记重复为True
‘last’: 除了最后一次出现, 标记重复为True
False: 将所有重复项标记为True
s.equal() bool other 判断两个Series是否包含相同元素, 相同位置NaN被认为是相同的
s.first() Series 基于时间偏移来获取时间序列的子集
offset ‘10D’: 前10天
s.last() Series offset ‘5M’: 过去5个月
s.head() Series n=5 返回前n行
s.idxmax() index skipna=True 排除NA/null值(否则返回nan)
s.idxmin() index skipna=True 排除NA/null值(否则返回nan)
s.isin() Series 返回布尔Series, 显示s中每个元素是否包含在传入的序列中
values set或list-like, 不可以是单个字符串
s.reindex() Series 更新索引, 索引对应的值不变, 之前不存在的索引的值默认设为NaN(s的索引必须单调递增或递减)
index 新索引
method=None None: 不填充间隙
‘backfill’ / ‘bfill’: 将比此索引排序靠后的有效值索引的值填充到此处
‘pad’ / ‘ffill’: 将比此索引排序靠前的有效值索引的值填充到此处
‘nearest’: 仅适用于可用于判断距离的索引, 选择离得最近的索引的值填充
copy=True 返回一个新对象, 即使传递的索引是相同的
level=None
fill_value=np.nan 缺失值填充的内容
limit=None 向前或向后填充的连续元素的最大数量(貌似索引只能是数字)
tolerance=None 原标签和新标签的最大距离(可计算距离的数据类型)

s.rename() Series 修改Series的name或索引且产生一个新的Series(应该可以本地修改, 但尝试没有成功)
index

标量: 更改s的name
fun: 把索引传入函数, 传出值替换原索引
字典: {old_index: new_index}
copy=True 在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/162839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Centos中的解压和压缩指令

在CentOS 7系统中&#xff0c;可以使用多种命令进行文件压缩和解压缩操作。以下是常见的文件压缩和解压命令及其用法的详解&#xff1a; 1.tar&#xff1a;tar命令用于打包文件或目录&#xff0c;并可选地压缩为tar压缩包。 创建tar压缩包&#xff1a;tar -cvf archive.tar f…

【深度学习】神经网络术语:Epoch、Batch Size和迭代

batchsize&#xff1a;中文翻译为批大小&#xff08;批尺寸&#xff09;。 简单点说&#xff0c;批量大小将决定我们一次训练的样本数目。 batch_size将影响到模型的优化程度和速度。 为什么需要有 Batch_Size : batchsize 的正确选择是为了在内存效率和内存容量之间寻找最…

Postgresql源码(116)提升子查询案例分析

0 总结 对于SQL&#xff1a;select * from student, (select * from score where sno > 2) s where student.sno s.sno; pullup在pull_up_subqueries函数内递归完成&#xff0c;分几步&#xff1a; 将内层rte score追加到上层rtbable中&#xff1a;rte1是student、rte2带…

nginx编译安装

1.下载nginx&#xff1a; 地址&#xff1a;http://nginx.org/en/download.html 2.安装依赖 安装gcc: yum install -y gcc安装pcre库 yum install -y pcre pcre-devel安装zlib库&#xff1a; yum install -y zlib zlib-devel3.安装nginx ./configure --prefix/usr/local/ngi…

Spark SQL将Hive表中的数据写入到MySQL数据库中

import org.apache.spark.sql.SparkSessionobject HiveToMySQL {def main(args: Array[String]): Unit {// 创建SparkSessionval spark SparkSession.builder().appName("HiveToMySQL").enableHiveSupport().getOrCreate()// 读取Hive表数据val hiveDF spark.tabl…

一体化大气环境监测设备实时守护我们的空气质量

WX-CSQX12 随着空气污染问题的日益严重&#xff0c;大气环境监测设备成为了我们生活中不可或缺的一部分。而一体化的大气环境监测设备&#xff0c;更是为我们的环境保护工作带来了更多的便利和效益。 一体化大气环境监测设备是一种集成了多种功能于一体的环保设备&#xff0c;…

BootStrap【表格二、基础表单、被支持的控件、表单状态】(二)-全面详解(学习总结---从入门到深化)

目录 表格二 表单_基础表单 表单_被支持的控件 表单_表单状态 表格二 紧缩表格 通过添加 .table-condensed 类可以让表格更加紧凑&#xff0c;单元格中的内补&#xff08;padding&#xff09;均会减半 <table class"table table-condensed table-bordered"…

学习量化交易如何入门?

Python 量化入门很简单&#xff0c;只需 3 步就能快速上手! 题主在程序方向没有相关经验&#xff0c;今天就从量化行业的通用语言-Python 着手&#xff0c;教大家如何快速入门。 一、准备工作 在开始 Python 编程之前&#xff0c;首先需要确保你的计算机上安装了合适的 Pytho…

【深度学习】Transformer简介

近年来&#xff0c;Transformer模型在自然语言处理&#xff08;NLP&#xff09;领域中横扫千军&#xff0c;以BERT、GPT为代表的模型屡屡屠榜&#xff0c;目前已经成为了该领域的标准模型。同时&#xff0c;在计算机视觉等领域中&#xff0c;Transformer模型也逐渐得到了重视&a…

【PythonGIS】基于Python面矢量转换线矢量

今天有些不一样&#xff0c;发这篇文章并不是项目需要。单纯的想到有这个功能没使用Python实现&#xff0c;所以就去研究了一下&#xff0c;第一时间就和大家分享。如何使用Python的osgeo库实现面矢量数据与线矢量数据的互相转换。 一、导入所需库 import os from osgeo impor…

论文速读《DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection》

概括主要内容 文章《DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection》提出了两种创新技术&#xff0c;以改善多模态3D检测模型的性能&#xff0c;通过更有效地融合相机和激光雷达传感器数据来提高对象检测的准确性&#xff0c;尤其是在行人检测方面…

自动化提交git

1.前要 这里只是讲解如何在Windows上创建自动化脚本/程序来达到自动pull、commit、push&#xff0c;减少冗余的仓库更新工作&#xff0c;避免在多平台下合作造成版本冲突等。 2.原理 使用Windows下默认的cmd/bat脚本编写代码。 只需要在网络上查询一些相关的语法&#xff0…

2023亚太杯数学建模C题思路 - 我国新能源电动汽车的发展趋势

1 赛题 问题C 我国新能源电动汽车的发展趋势 新能源汽车是指以先进技术原理、新技术、新结构的非常规汽车燃料为动力来源( 非常规汽车燃料指汽油、柴油以外的燃料&#xff09;&#xff0c;将先进技术进行汽车动力控制和驱动相结 合的汽车。新能源汽车主要包括四种类型&#x…

【计算思维】蓝桥杯STEMA 科技素养考试真题及解析 6

1、明明买了一个扫地机器人&#xff0c;可以通过以下指令控制机器人运动: F:向前走 10 个单位长度 L:原地左转 90 度 R:原地右转 90 度 机器人初始方向向右&#xff0c;需要按顺序执行以下那条指令&#xff0c;才能打扫完下图中的道路 A、F-L-F-R-F-F-R-F-L-F B、F-R-F-L-F-F…

h5如何使用navigateBack回退到微信小程序页面并携带参数

前言 在h5中使用navigateBack回退到微信小程序页面很常见&#xff0c;但是有一种交互需要在回退之后的页面可以得到通知&#xff0c;拿到标识之后&#xff0c;进行某些操作&#xff0c;这样的话&#xff0c;由于微信官方并没有直接提供这样的api&#xff0c;就需要我们开动脑筋…

视频剪辑有妙招:批量置入封面,轻松提升视频效果

随着社交媒体的兴起&#xff0c;视频已经成为分享和交流的重要方式。无论是专业的内容创作者还是普通的社交媒体用户&#xff0c;都要在视频剪辑上下一番功夫&#xff0c;才能让视频更具吸引力。而一个吸引的封面往往能在一瞬间抓住眼球&#xff0c;提高点击率。还在因如何选择…

【SpringBoot】Redisson 分布式锁注解和 @Transactional 注解一起使用问题

一、前言 平时使用切面去加分布式锁&#xff0c;是先开启事务还是先尝试获得锁&#xff1f;这两者有啥区别&#xff1f; 业务中怎么控制切面的顺序&#xff1f;切面的顺序对事务的影响怎么避免&#xff1f; 下面程序分析&#xff1a; OverrideTransactionalpublic ReceiveH5…

uni-app - 弹出框

目录 1.基本介绍 2.原生uinapp 通过uni.showActionSheet实现 3.使用组件 Popup 弹出层 ③效果展示 1.基本介绍 弹出框让我们在需要时在屏幕底部弹出一个菜单&#xff0c;它通常用于在各种应用程序中进行选择操作。Uniapp为我们提供了基本的底部弹出框组件&#xff0c;但它也有…

OpenSearch开发环境安装Docker和Docker-Compose两种方式

文章目录 简介常用请求创建映射写入数据查询数据其他 安装Docker方式安装OpenSearch安装OpenSearchDashboard Docker-Compose方式Docker-Compose安装1.设置主机环境2.下载docker-compose.yml文件3.启动docker-compose4.验证 问题问题1&#xff1a;IPv4 forwarding is disabled.…

如何搭建Zblog网站并通过内网穿透将个人博客发布到公网

文章目录 1. 前言2. Z-blog网站搭建2.1 XAMPP环境设置2.2 Z-blog安装2.3 Z-blog网页测试2.4 Cpolar安装和注册 3. 本地网页发布3.1. Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 想要成为一个合格的技术宅或程序员&#xff0c;自己搭建网站制作网页是绕…