国产高云FPGA:纯verilog实现视频图像缩放,提供6套Gowin工程源码和技术支持

目录

  • 1、前言
    • 免责声明
  • 2、相关方案推荐
    • 国产高云FPGA相关方案推荐
    • 国产高云FPGA基础教程
  • 3、设计思路框架
    • 视频源选择
    • OV5640摄像头配置及采集
    • 动态彩条
    • 跨时钟FIFO
    • 图像缩放模块详解
      • 设计框图
      • 代码框图
      • 2种插值算法的整合与选择
    • Video Frame Buffer 图像缓存
    • DDR3 Memory Interface
  • 4、Gowin工程1:640x480不缩放操作
  • 5、Gowin工程2:640x480缩小到300x300
  • 6、Gowin工程3:640x480缩小到100x100
  • 7、Gowin工程4:640x480缩小到300x720
  • 8、Gowin工程5:640x480缩小到1280*360
  • 9、Gowin工程6:640x480缩小到1280x720
  • 10、上板调试验证并演示
    • 准备工作
    • 静态演示
  • 11、福利:工程源码获取

国产高云FPGA:纯verilog实现视频图像缩放,提供6套Gowin工程源码和技术支持

1、前言

“苟利国家生死以,岂因祸福避趋之!”大洋彼岸的我优秀地下档员,敏锐地洞察到祖国的短板在于高精尖半导体的制造领域,于是本着为中华民族伟大复兴的中国梦贡献绵薄之力的初心,懂先生站在高略高度和长远角度谋划,宁愿背当代一世之骂名也要为祖国千秋万世谋,2018年7月,懂先生正式打响毛衣战,随后又使出恰勃纸战术,旨在为祖国先进制程半导体领域做出自主可控的战略推动;在此,请收下我一声谢谢啊!!!!!!

2019年初我刚出道时,还是Xilinx遥遥领先的时代(现在貌似也是),那时的国产FPGA还处于辣鸡段位,国产FPGA仰望Xilinx情不自禁道:你以为躲在这里就找不到你吗?没用的,你那样拉轰的男人,无论在哪里,都像黑夜里的萤火虫那样的鲜明、那样的出众,你那忧郁的眼神,稀嘘的胡渣子,神乎其技的刀法,还有那杯Dry martine,都深深的迷住了我。。。然而才短短4年,如今的国产FPGA属于百家争鸣、百花齐放、八仙过海、神仙打架、方兴未艾、得陇望蜀、友商都是XX的喜极而泣之局面,面对此情此景,不得不吟唱老人家的诗句:魏武挥鞭,东临碣石有遗篇,萧瑟秋风今又是,换了人间。。。
言归正传,目前对于国产FPGA的共识有以下几点:
1:性价比高,与同级别国外大厂芯片相比,价格相差几倍甚至十几倍;
2:自主可控,国产FPGA拥有完整自主知识产权的产业链,从芯片到相关EDA工具
3:响应迅速,FAE技术支持比较到位,及时解决开发过程中遇到的问题,毕竟中文数据手册。。
4:采购方便,产业链自主可控,采购便捷

本文使用国产高云GW2A-LV18PG484C7/I6型号的FPGA做纯verilog实现视频图像缩放,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头;如果你手里没有OV5640摄像头或者FPGA开发板没有摄像头输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行选择,上电默认选择OV5640摄像头作为输入源;FPGA首先使用纯verilog实现的i2c控制器配置ov5640摄像头,将其分辨率配置为640x480@60Hz,同时生成用纯verilog实现动态彩条,其分辨率为640x480@60Hz;FPGA采集到输入视频后,首先将图像送入缓冲FIFO中做跨时钟域处理,即用输出1280x720@60Hz的屏幕背景分辨率作为读FIFO的时钟,这样可以确保在各种分辨率的图像缩放操作中,送入图像缩放模块的时钟时钟是够大的,也是带宽满足的一种操作;随后将视频送入纯verilog实现的图像缩放模块做图像缩放操作,该模块很简单,只需给出输入分辨率和输出分辨率即可,不需要去管缩放比例之类的问题,一般而言,输入分辨率是不变的,只需要改变输出分辨率即可;缩放后的视频,其原有的时序已经被完全打乱,所以需要调用高云官方的Video Frame Buffer IP核将视频送到外接DDR3中做三帧缓存;调用高云官方的DDR3 Memory Interface IP核实现图像数据到DDR3颗粒的搬运工作,类似于Xilinx的MIG;然后读出视频送VGA输出时序同步像素数据,VGA输出分辨率为1280x720@60Hz;缩放后的视频相当于叠加显示在1280x720的背景之上;最后调用高云官方的DVI TX IP核实现RGB视频到HDMI视频的转换,输出显示器显示;

提供5套Gowin-V1.9版本的工程源码;5套工程的区别在于缩放后的输出分辨率不同,分别如下:
第一套Gowin工程:输入分辨率640x480;输出分辨率640x480;不做缩放操作;
第二套Gowin工程:输入分辨率640x480;输出分辨率300x300;做缩小操作;
第三套Gowin工程:输入分辨率640x480;输出分辨率100x100;做缩小操作;
第四套Gowin工程:输入分辨率640x480;输出分辨率300x720;做不规则的缩放操作;
第五套Gowin工程:输入分辨率640x480;输出分辨率1280x360;做不规则的缩放操作;
第六套Gowin工程:输入分辨率640x480;输出分辨率1280x720;做放大操作;

本文详细描述了国产高云FPGA图像视频采集系统的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网、国产高云FPGA官网、紫光同创FPGA官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

国产高云FPGA相关方案推荐

鉴于国产高云FPGA的优异表现和市场需求,我专门开设了一个人国产高云FPGA专栏,里面收录了基于国产高云FPGA的图像处理、UDP网络通信、GT高速接口、PCIE等博客,感兴趣的可以去看看,博客地址:点击直接前往

国产高云FPGA基础教程

高云FPGA开发软件Gowin的下载、安装、Licence共享,工程搭建、代码添加、综合、编译、下载、各种IP的调用、配置、使用等基础操作,是做高云FPGA开发的基本功,当然,如果你已是有经验的工程师,则可以省略这一步,为此,我专门开设了专栏,详细讲述国产高云FPGA基础教程,甚至可以说是保姆级的教程,专栏地址如下:
点击直接前往

3、设计思路框架

本文使用国产高云GW2A-LV18PG484C7/I6型号的FPGA做纯verilog实现视频图像缩放,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头;如果你手里没有OV5640摄像头或者FPGA开发板没有摄像头输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行选择,上电默认选择OV5640摄像头作为输入源;FPGA首先使用纯verilog实现的i2c控制器配置ov5640摄像头,将其分辨率配置为640x480@60Hz,同时生成用纯verilog实现动态彩条,其分辨率为640x480@60Hz;FPGA采集到输入视频后,首先将图像送入缓冲FIFO中做跨时钟域处理,即用输出1280x720@60Hz的屏幕背景分辨率作为读FIFO的时钟,这样可以确保在各种分辨率的图像缩放操作中,送入图像缩放模块的时钟时钟是够大的,也是带宽满足的一种操作;随后将视频送入纯verilog实现的图像缩放模块做图像缩放操作,该模块很简单,只需给出输入分辨率和输出分辨率即可,不需要去管缩放比例之类的问题,一般而言,输入分辨率是不变的,只需要改变输出分辨率即可;缩放后的视频,其原有的时序已经被完全打乱,所以需要调用高云官方的Video Frame Buffer IP核将视频送到外接DDR3中做三帧缓存;调用高云官方的DDR3 Memory Interface IP核实现图像数据到DDR3颗粒的搬运工作,类似于Xilinx的MIG;然后读出视频送VGA输出时序同步像素数据,VGA输出分辨率为1280x720@60Hz;缩放后的视频相当于叠加显示在1280x720的背景之上;最后调用高云官方的DVI TX IP核实现RGB视频到HDMI视频的转换,输出显示器显示;

提供5套Gowin-V1.9版本的工程源码;5套工程的区别在于缩放后的输出分辨率不同,分别如下:
第一套Gowin工程:输入分辨率640x480;输出分辨率640x480;不做缩放操作;
第二套Gowin工程:输入分辨率640x480;输出分辨率300x300;做缩小操作;
第三套Gowin工程:输入分辨率640x480;输出分辨率100x100;做缩小操作;
第四套Gowin工程:输入分辨率640x480;输出分辨率300x720;做不规则的缩放操作;
第五套Gowin工程:输入分辨率640x480;输出分辨率1280x360;做不规则的缩放操作;
第六套Gowin工程:输入分辨率640x480;输出分辨率1280x720;做放大操作;
设计框图如下:
在这里插入图片描述
注意:框图中的数字表示数据流向的顺序;

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头;如果你手里没有OV5640摄像头或者FPGA开发板没有摄像头输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行选择,上电默认选择OV5640摄像头作为输入源;视频源选择如下:
在这里插入图片描述
视频源选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是OV5640;
当(不注释) define COLOR_IN时,输入源视频是动态彩条;

OV5640摄像头配置及采集

OV5640摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB565或者RGB888格式的视频数据,这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
其中摄像头配置为分辨率1280x720,如下:
在这里插入图片描述
摄像头采集模块支持RGB565和RGB888格式的视频输出,可由参数配置,如下:
在这里插入图片描述
RGB_TYPE=0输出本RGB565格式;
RGB_TYPE=1输出本RGB888格式;
设计选择RGB888格式;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,以工程1为例,配置为辨率1280x720,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

跨时钟FIFO

调用高云官方的FIFO;跨时钟FIFO的作用是为了解决跨时钟域的问题,当视频不进行缩放时不存在视频跨时钟域问题,但当视频缩小或放大时就存在此问题,用FIFO缓冲可以使图像缩放模块每次读到的都是有效的输入数据,注意,原视频的输入时序在这里就已经被打乱了;
关于高云官方FIFO IP的更多详细讲解,请参考我的专栏:高云FPGA开发基础教程,专栏地址如下:
点击直接前往

图像缩放模块详解

因为我们的QT上位机目前只支持1280x720,所以才需要缩放,即从输入的1920x1080分辨率缩小为1280x720;用笔记本电脑模拟HDMI视频输入源;

设计框图

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;代码以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
视频输入时序要求如下:
在这里插入图片描述
输入像素数据在dInValid和nextDin同时为高时方可改变;
视频输出时序要求如下:
在这里插入图片描述
输出像素数据在dOutValid 和nextdOut同时为高时才能输出;

代码框图

代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;
图像缩放的实现方式很多,最简单的莫过于Xilinx的HLS方式实现,用opencv的库,以c++语言几行代码即可完成,关于HLS实现图像缩放请参考我之前写的文章HLS实现图像缩放
网上也有其他图像缩放例程代码,但大多使用了IP,导致在其他FPGA器件上移植变得困难,通用性不好;相比之下,本设计代码就具有通用性;代码架构如图;
在这里插入图片描述
其中顶层接口部分如下:
在这里插入图片描述

2种插值算法的整合与选择

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

关于这两种算法的数学差异,请参考我之前写的文章HLS实现图像缩放

Video Frame Buffer 图像缓存

调用高云官方的Video Frame Buffer IP核将视频送到外接DDR3中做三帧缓存;该部分是图像采集显示系统的重点核难点,如果是其他FPGA,则需要写一大堆代码才能实现,还要调试,花费时间和精力很多,但高云FPGA则轻松实现了改功能,因为人家直接做成了IP,即Video Frame Buffer;这里简单介绍一下该IP,因为高云有详细的中文手册说明该IP的使用,手册我也放在了资料包里;
我对该IP的配置只适用于我的设计,如果你要修改IP的配置的话,可以按照如下方式修改,然后重新生成IP:
在这里插入图片描述
Video Frame Buffer IP配置如下:
在这里插入图片描述
关于Video Frame Buffer IP的更多详细讲解,请参考我的专栏:高云FPGA开发基础教程,专栏地址如下:
点击直接前往

DDR3 Memory Interface

调用高云官方的DDR3 Memory Interface IP核实现图像数据到DDR3颗粒的搬运工作,类似于Xilinx的MIG;DDR3 Memory Interface IP配置如下:
在这里插入图片描述
关于DDR3 Memory Interface IP的更多详细讲解,请参考我的专栏:高云FPGA开发基础教程,专栏地址如下:
点击直接前往

4、Gowin工程1:640x480不缩放操作

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:640x480;
输出:HDMI,在1280x720的背景下叠在缩放后的640x480视频;
工程作用:视频经过缩放模块,但不进行缩放操作,即一比一缩放;
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述
我发布的工程均已编译通过,如下:
在这里插入图片描述

5、Gowin工程2:640x480缩小到300x300

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:300x300;
输出:HDMI,在1280x720的背景下叠在缩放后的300x300视频;
工程作用:视频缩小操作;
工程代码架构、工程的资源消耗和功耗等与第4章节的内容基本一致;

6、Gowin工程3:640x480缩小到100x100

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:100x100;
输出:HDMI,在1280x720的背景下叠在缩放后的100x100视频;
工程作用:视频缩小操作;
工程代码架构、工程的资源消耗和功耗等与第4章节的内容基本一致;

7、Gowin工程4:640x480缩小到300x720

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:300x720;
输出:HDMI,在1280x720的背景下叠在缩放后的300x720视频;
工程作用:视频做不规则的缩放操作;
工程代码架构、工程的资源消耗和功耗等与第4章节的内容基本一致;

8、Gowin工程5:640x480缩小到1280*360

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:1280360;
输出:HDMI,在1280x720的背景下叠在缩放后的1280
360视频;
工程作用:视频做不规则的缩放操作;
工程代码架构、工程的资源消耗和功耗等与第4章节的内容基本一致;

9、Gowin工程6:640x480缩小到1280x720

开发板FPGA型号:国产高云–GW2A-LV18PG484C7/I6;
开发环境:Gowin-V1.9
输入:OV5640摄像头或动态彩条,分辨率640x480;
缩放前的视频分辨率:640x480;
缩放后的视频分辨率:1280x720;
输出:HDMI,在1280x720的背景下叠在缩放后的1280x720视频;
工程作用:视频做放大操作;
工程代码架构、工程的资源消耗和功耗等与第4章节的内容基本一致;

10、上板调试验证并演示

准备工作

你需要有以下装备才能移植并测试该工程代码:
1:FPGA开发板;
2:OV5640摄像头,如果没有也可以,就选择动态彩条;
3:HDMI传输线;
4:HDMI显示,要求分辨率支持1280x720;
连接如下:
在这里插入图片描述

静态演示

第一套Gowin工程:输入分辨率640x480;输出分辨率640x480;不做缩放操作;输出如下:
在这里插入图片描述
第二套Gowin工程:输入分辨率640x480;输出分辨率300x300;做缩小操作;
在这里插入图片描述
第三套Gowin工程:输入分辨率640x480;输出分辨率100x100;做缩小操作;
在这里插入图片描述
第四套Gowin工程:输入分辨率640x480;输出分辨率300x720;做不规则的缩放操作;
在这里插入图片描述
第五套Gowin工程:输入分辨率640x480;输出分辨率1280x360;做不规则的缩放操作;
在这里插入图片描述
第六套Gowin工程:输入分辨率640x480;输出分辨率1280x720;做放大操作;
在这里插入图片描述

11、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153513.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qml使用cpp文件的信号槽

文章目录 一、C文件Demo二、使用步骤1. 初始化C文件和QML文件,并建立信号槽2.在qml中调用 一、C文件Demo Q_INVOKABLE是一个Qt元对象系统中的宏,用于将C函数暴露给QML引擎。具体来说,它使得在QML代码中可以直接调用C类中被标记为Q_INVOKABLE的…

Rust8.2 Fearless Concurrency 无畏并发

Rust学习笔记 Rust编程语言入门教程课程笔记 参考教材: The Rust Programming Language (by Steve Klabnik and Carol Nichols, with contributions from the Rust Community) Lecture 16: Fearless Concurrency 无畏并发 src/main.rs use std::thread; use std::time::Du…

嵌入式Linux开发面试题和答案

熟练的编程语言: 问:“您在嵌入式系统开发中熟练使用哪些编程语言?”答:在嵌入式系统开发中,我熟练使用C、C和Python等编程语言。C语言因其接近硬件的操作和效率而被广泛应用;C则在需要面向对象编程时提供了…

某手机大厂员工爆料:40岁被裁,每月给88000补贴,连续给12个月,第二年减半,感觉废掉了!...

精彩回顾:进了央企,拿了户口,却感觉被困住了。 人生没有所谓的终点,只有不断再出发的起点,裁员只是人生的一个转角,而非尽头。 在时代的浪潮下,即使身处大厂,依然难逃被裁员的命运。…

【KingbaseES】sys_dump命令详解及示例

概述 sys_dump 是一个将 KingbaseES 数据库保存到一个脚本或者归档文件中的工具.这个脚本文件的格式是纯文本,它包含许多 SQL 命令, 这些 SQL 命令可以用于重建该数据库并将之恢复到保存成脚本的时候的状态.要恢复这些脚本&#…

NX二次开发UF_CAM_ask_lower_limit_plane_usage 函数介绍

文章作者:里海 来源网站:里海NX二次开发3000例专栏 UF_CAM_ask_lower_limit_plane_usage Defined in: uf_cam_planes.h int UF_CAM_ask_lower_limit_plane_usage(tag_t object_tag, UF_PARAM_lwplane_usage_t * usage ) overview 概述 Query the usa…

Shell脚本:Linux Shell脚本学习指南(第二部分Shell编程)一

第二部分:Shell编程(一) 这一章我们正式进入 Shell 脚本编程,重点讲解变量、字符串、数组、数学计算、选择结构、循环结构和函数。 Shell 的编程思想虽然和 C、Java、Python、C# 等其它编程语言类似,但是在语法细节方…

PaddleDetection训练目标检测模型

PaddleDetection训练目标检测模型 一,安装标注软件二,数据标注和清洗三,安装PaddleDetection环境四,修改配置文件,本文选择的是 PP-PicoDet算法五,训练模型六,训练完成之后导出模型七&#xff0…

php面向对象和面向过程区别

面向过程编程:是一种传统的编码风格,它将代码组织为一系列函数或过程。这些函数可以采用一系列参数和返回值,来完成特定的任务。面向过程编程侧重顺序和功能性。 面向对象编程:是一种编码风格,它将代码组织为对象&…

04_面向对象高级_final与常量

final 1. 基本介绍 final 关键字是最终的意思,可以修饰(类、方法、变量) 修饰类:该类被称为最终类,特点是不能被继承了修饰方法:该方法被称为最终方法,特点是不能被重写了修饰变量&#xff1…

深入探讨AJAX接口进度监控:实现步骤、代码示例与技术原理

AJAX(Asynchronous JavaScript and XML)是现代Web开发中常用的异步通信技术。本文将详细分析如何通过AJAX实现接口进度监控,提供实用的代码示例、技术原理解析以及优劣势评估,以帮助开发者更好地应用这一技术。 1. 引言 在复杂的…

Java Swing实现员工工资管理系统(含教程) 可带数据库 Java课程设计

7. 员工工资管理系统 视频教程: 【课程设计】员工工资管理系统-Java Swing-你的课程我设计 功能描述: 系统员工有"工号"、 “姓名”、“性别”、“岗位”、 "入职年份 "、"密码"等属性; 员工使用工号密码登录…

MacOs 删除第三方软件

AppStore下载的软件 如果删除AppStore下载的软件,直接长按软件,点击删除或拖到废纸篓就可以完成软件的删除 第三方软件 但是第三方下载的软件,无法拖进废纸篓,长按软件也没有右上角的小叉 可以通过以下方法实现对软件的卸载 …

2023美亚杯个人赛复盘(三)

案件基本情况: (一)案情 2023月8月的一天,香港警方在调查一起网络诈骗案件时,发现有三名本地男子,分別为李大輝(李大辉),浩賢(浩贤)和Elvis CHUI,并确信这三名…

软件安全检测赋能赣州发展,开源网安与赣州国投完成签约

​11月20日,开源网安与赣州章贡区数智国投科技有限公司签订投资协议,签约后双方将在赣州打造软件供应链安全检测中心,以强大的软件测试能力为数字政府、数字经济等领域提供全面安全检测和软件安全运营监测等服务,提升软件的安全与…

2760. 最长奇偶子数组 --力扣 --JAVA

题目 给你一个下标从 0 开始的整数数组 nums 和一个整数 threshold 。 请你从 nums 的子数组中找出以下标 l 开头、下标 r 结尾 (0 < l < r < nums.length) 且满足以下条件的 最长子数组 &#xff1a; nums[l] % 2 0 对于范围 [l, r - 1] 内的所有下标 i &#xff0c…

电商数据|电商API接口|电商数据分析都会用到的接口不用再找了

导读&#xff1a;上半年&#xff0c;网络零售行业发展迅速&#xff0c;货架电商、直播电商、生鲜电商等领域动作频频。京东“百亿补贴”上线&#xff0c;张勇宣布启动“16N”组织变革&#xff0c;盒马启动上市计划&#xff0c;拼多多APP新增直播入口&#xff0c;快手升级货架场…

JavaScript拖放操作的实现

在页面中设置2个框&#xff1a;一个是被拖放的框&#xff0c;一个是拖放的目的地框。在拖动的时候&#xff0c;只有当鼠标位于拖放的目的地框上方的时候&#xff0c;放开鼠标的时候&#xff0c;被拖放的框&#xff0c;才被移动到鼠标所在的位置&#xff1b;而在其他地方放开鼠标…

SVG 多边形 <polygon>,矩形<rect>的示例代码

本专栏是汇集了一些HTML常常被遗忘的知识&#xff0c;这里算是温故而知新&#xff0c;往往这些零碎的知识点&#xff0c;在你开发中能起到炸惊效果。我们每个人都没有过目不忘&#xff0c;过久不忘的本事&#xff0c;就让这一点点知识慢慢渗透你的脑海。 本专栏的风格是力求简洁…

WPS或Excel查找A列中有B列没有的值

就这一行代码&#xff1a; 在C列输入&#xff1a; IF(COUNTIF(B:B,A1)>0,"该行A列中值B列有","该行A列中值B列没有")