神经网络(第二周)

一、简介

1.1 需求预测示例

1.1.1 逻辑回归算法

根据价格预测商品是否畅销。特征:T恤的价格;分类:销售量高1/销售量低0;使用逻辑回归算法进行分类,拟合效果如下图所示:

 1.1.2 神经元和神经网络

将逻辑回归的输出记为a(activation),整个逻辑回归算法都视作一个神经元,神经网络如下图所示:

以上是对单个神经元的描述,现在构建神经网络只需要将这些神经元串在一起并将它们连接在一起即可。现在根据多个特征:T恤的价格、运费、营销量,以及材料质量(优质厚棉还是劣质材料)这四个特征来预测商品是否畅销。我们知道,一件T恤是否畅销,可能取决于实惠性、潜在买家的认知度、感知质量这三个因素。我们利用逻辑回归算法构建第一个神经元,将价格、运费这两个特征作为输入,实惠性与否的概率作为输出。再将营销量特征作为输入,潜在买家的认知度高低的概率作为输出,使用逻辑回归算法构建第二个神经元。将价格、材料质量两个特征作为输入,感知质量好坏的概率作为输出,使用逻辑回归算法构建第三个神经元。最后将前面三个神经元的输出作为新的输入,畅销高低的概率作为新的输出,使用逻辑回归算法构建第四个神经元。神经网络如下图所示:

层是一组神经元,它们将相同或相似的特征作为输入, 然后一起输出一些数字。前面三个神经元构成一个“层”,四个输入特征作为“输入层”,前三个神经元的输出作为“激活值”,右侧神经元构成一个“输出层”。 

但是在实际中,设计神经网络的时候,不需要指定哪些特征作为某个神经元的输入,可以将所有的特征都作为任何一个神经元的输入。也不需要指定神经元的输出是何含义。除了“输入层”、“输出层”,中间的所有层都称为“隐藏层”,我们是不需要知道隐藏层中的实现细节。这就是神经网络的强大之处,他会自动计算在某个隐藏层中需要用到的特征。

如上图所示,隐藏层可以有很多个。第一个隐藏层 ,x向量作为输入,由于有三个神经元,因此他的输出是个三维向量的激活向量。第二个隐藏层,以第一个隐藏的输出作为输入,由于有两个神经元,因此它的输出是二维的激活向量。第二个隐藏层的输出作为输出层的输入,最后输出结果。

综上所述,我们构建自己的神经网络时 ,只需考虑的问题是:1、构建几个隐藏层?2、每个隐藏层设计多少个神经元?。

1.2 图像感知示例

做图像识别时,将一张照片的像素点以向量的形式作为输入。神经网络中,隐藏层的功能我们是不知道的,但是将每个隐藏的神经元的输出可视化出来,可能会大致了解神经元做了什么。例如将第一个隐藏层可视化,我们会发现,他的每个神经元试图寻找图片中不同方向的横竖线。第二个隐藏层,每个神经元在寻找脸部特征,例如第一个神经元在寻找左眼睛。第三个隐藏层,每个神经元将面部不同的部分聚合,尝试检测是否存在更大、更粗糙的面部形状。最后,检测面部与不同面部形状的对应程度可以创建一组丰富的特征,然后帮助输出层尝试确定人物图片的身份。

不同隐藏层,他关注的像素矩阵大小不同,越往后越大。上述隐藏层的功能,全是由神经网络自行实现的,不是我们规定第一个隐藏层检测横竖线,第二个检测鼻子眼睛,第三个聚合成更大的面部轮廓。所以神经网络是强大的。

1.3 更复杂的神经网络

按照惯例,当我们说这个神经网络有四层时,它包括输出层和所有的隐藏层,但一般不包括输入层。

上图中,将第三个隐藏层放大,他的输入是第二个隐藏层的输出\overrightarrow{a}^{[2]}。隐藏层中,每个神经元都有属于他自己的模型参数。a向量称为激活值,g()函数称为激活函数(输入前一层的激活值,生成新的激活值),目前我们使用的激活函数是sigmoid函数,实际上激活函数还可以是其他的函数,后面会做相应的介绍。

二、神经网络前向传播

2.1 手写数字识别示例

功能,输入8*8像素矩阵的图片,模块自动预测手写数字是0/1(手写数字有10种,为了简化成二分类问题,我们只预测数字0或者1)。

如上图所示,我们设计的三层神经网络,第一隐藏层25个神经元,第二隐藏层15个神经元,输出层一个神经元。这里的\overrightarrow{x}是输入向量,也可以称之为\overrightarrow{a}^{[0]}。 \overrightarrow{a}^{[1]}是25维向量,第一隐藏层展开的效果图如上图所示。

接下来是计算第二隐藏层:

最后计算预测结果:

先根据\overrightarrow{x}计算\overrightarrow{a}^{[1]},再计算\overrightarrow{a}^{[2]},最后计算\overrightarrow{a}^{[3]}(f(x)),根据f(x)的大小做出二分类的判断,概率大于等于0.5预测1,否侧预测0,整体是从左向右计算的。这也被称为“前向传播”。

2.2 如何用代码实现

Tensorflow和pytorch是机器学习相关的有效工具库。接下来使用Tensorflow进行代码的编写演示:

第一隐藏层,首先定义输入特征向量x,再定义第一隐藏层(形参1:神经元数量   形参2:激活函数),最后计算激活值a1。

第二隐藏层,首先定义layer_2(形参1:神经元数量   形参2:激活函数),最后计算激活值a2。

a2是分类的概率,设定阀值为0.5,如果概率大于等于0.5,预测值为1,否为为0。

2.2.1 单个网络层上的前向传播

首先计算\overrightarrow{a}^{[1]},他是由a_{1}^{[1]}a_{2}^{[1]}a_{3}^{[1]}三个激活值组成的向量,激活值的计算方法如下图所示。

最后计算\overrightarrow{a}^{[2]}

2.2.2 前向传播的一般实现

在上一节中,每一个神经元激活值的计算都是相同的操作,我们可以对此进行简化,封装在dense函数中。输入:上一层的激活值、这一层的w矩阵、b矩阵、激活函数。返回值:激活向量。

2.2.3 前向传播的矢量化实现

在上一节中,dense函数中使用for循环来实现,这会降低计算效率。矢量化的实现方式,会大幅度提高计算速度,下面是矢量化的实现步骤(左边代码是上一节版本,右边代码是对应地矢量化实现代码):

2.2.4 Tensorflow实现

第一步指定模型,告诉TensorFlow如何计算推理。在第二步,需要使用TensorFlow进行编译,关键步骤是要指定使用的损失函数。第三步使用fit函数,它告诉TensorFlow使用在步骤2中指定的成本函数的损失来拟合你在步骤 1中指定的模型和数据集 X,Y。

2.3 Sigmoid激活函数的替代方案

在上图中,第一个隐藏层中的第二个神经元,通过价格、购物成本、市场、材料来预测消费者的认识程度。最初我们使用Sigmoid激活函数,将消费者的认识程度分为两类:认可1、不认可0。但是实际情况,消费者的认识程度可以更加细分为:不认可、稍微认可、认可、非常认可等类别,相对应的可以将激活值设计成从0到正无穷的正数。

上图中,是三种常见的激活函数,左边是线性激活函数(由于g(z)=z,有些时候会被认为没有使用激活函数)、中间是Sigmoid激活函数、右边是ReLU激活函数。

2.3.1 如何选择激活函数

如何为神经网络中的每一个神经元选择合适的激活函数?

  • 二分类问题,选择Sigmoid激活函数
  • 如果标签值y可正可负,选择线性激活函数
  • 如果标签值y取0到正无穷,选择ReLU激活函数

2.3.2 激活函数的意义

如上图所示,我们设计一个具有一个隐藏层、一个输出层的神经网络。假设每一个神经元都使用线性激活函数(等价于不使用激活函数),前向传播过程如右边所示。最终计算结果\vec{a}^{[2]}=wx+b,完全等同于直接使用线性回归,所以说设计的两层神经网络基本没有意义。

对上图的神经网络中,三个隐藏层 使用线性激活函数,输出层使用逻辑回归,最终结果等价于直接使用逻辑回归。输出结果如下图所示:

综上所述:尽量不要在隐藏层使用线性激活函数。 

三、多分类问题

3.1 softmax回归模型 

假设n分类,也就是说y的取值有1,2,3,...,n,激活值如下图所示:

注意,当n=2时,此时又变成了逻辑回归。也就是说softmax回归模型就是逻辑回归模型的推广。

逻辑回归的损失函数如下,其中当y=1时,loss=-loga_{1};当y=0时,loss=-loga_{2}

相对应的softmax回归的损失函数如下:

3.1.1 softmax输出

前面课程中,我们对手写数字只预测0/1,是二分类问题。现在我们预测所有可能的数字0-9,设计的神经网络输出层原本只有一个神经元,现在要变成10个神经元,如下图所示。这样的输出层也被称为softmax输出。

输入还是和原来的一样,是个手写数字图片\vec{x},经过第一个隐藏层得到激活向量\vec{a}^{[1]}。将\vec{a}^{[1]}当作输入,经过第二个隐藏层得到激活向量\vec{a}^{[2]}。将\vec{a}^{[2]}当作输入,经过softmax层,得到每个数字的概率\vec{a}^{[3]}。计算过程如下图所示。

softmax层也被称为softmax激活函数。代码实现如下。注意,以下代码不是最优的,后面的课程中会给出更好的解决方案。

3.1.2 改进实现

x1=2/10000,x2=(1+1/10000)-(1-1/10000),理论上x1=x2,但是计算机计算的时候,他的存储空间是有限的,实际输出如下图所示:

x2更加精确。上一节的代码中softmax代价函数是正确的,但是有一种方式可以减少这些数值舍入误差,从而在TensorFlow中实现更准确的计算。

首先以逻辑回归为示例,我们首先计算激活值a,再计算损失函数loss,代码如下图所示。注意,逻辑回归中数值舍入的误差较小,可以忽略不计,但是softmax回归中,这类误差较大。

我们还可以换一种实现方式,不计算中间值a,直接使用拟合值z计算loss,实现方式如下图所示(输出层使用线性激活函数,这样的话就相当于没有计算中间值a,而是直接使用拟合值z;损失函数增加一个参数)。相比较上一个实现方法,TensorFlow可以重新排列这个表达式中的项,并提出一种在数值上更准确的实现方法来计算这个损失函数。

同理softmax回归也可以进行改进:

3.2 多标签分类

注意区分多类分类、多标签分类:

多标签分类:给一张图片,输出图片中是否有人、是否有车两个二分类的多标签分类。

多类分类:

四、高级优化算法

4.1 Adam算法

我们使用梯度下降算法的时候,学习率\alpha是个定值,他可能会出现两种极端情况。下图左,\alpha偏小,从起始点start开始,逐渐迭代,迭代次数多才能到达最小点。下图右,\alpha偏大,导致每次迭代的震荡大。

而Adam算法可以解决这个问题,他可以根据运算情况,适度调节\alpha的大小。如上图左,若每次迭代的方向大致相同,就应该增大\alpha;如上图右,若每次迭代,参数来回震荡,就应该减小\alpha

模型与之前相同,编译模型的方式与之前一样,不同的是向编译函数添加一个额外的参数,即指定要使用的优化器tf.keras.optimizers.Adam。Adam优化算法需要一些默认的初始学习率 Alpha,上图例子中,将初始学习率设置为0.003。

4.2 卷积层

到目前为止,我们使用的所有神经网络层都是密集层类型,其中该层中的每个神经元都从前一层获得所有激活的输入。

上图中,每个神经元的输入不是前一层的所有激活值,而是专属于他的部分激活值。这样的网络层称之为卷积层。卷积层的优点:1、更快的计算速度。2、需要更少的数据,过度拟合的概率减少。
如果神经网络中有多个卷积层,会被称为卷积神经网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/140136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jira Data Center(非集群)升级操作

一、升级准备 Jira 管理界面执行升级检查下载升级包,使用原操作方式相同的方式安装。我这里原来的版本是通过./atlassian-jira-software-9.11.2-x64.bin安装的,接下来下载atlassian-jira-software-9.11.3-x64.bin的安装文件停止 Jira,bin/st…

NextJS开发:使用IconPark、Lucide图标库

IconPark、Lucide两个很不错的图标库&#xff0c;如果需要用到微信、阿里等国内logo可以使用IconPark&#xff0c;Lucide中没有包含这些内容。 安装IconPark npm install icon-park/react --save简单使用 import {Home} from icon-park/react;<Home/> <Home theme&…

Module build failed (from ./node_modules/postcss-loader/src/index.js):

出现该错误是你可能没认真看官网的安装配置&#xff0c;可直接看该目录3&#xff0c;一个字一个字看 先安装uview 如果选择v1版本&#xff0c;建议使用npm下载&#xff0c;下面以v1版本为例&#xff0c;使用的是npm下载&#xff0c;导入uview时该文件也在node_modules文件夹里…

Anolis 8.6 安装 Drawio

Anolis 8.6 安装 Drawio 22.1.0 一.RPM版&#xff08;不建议&#xff09;二.WAR 包部署 一.RPM版&#xff08;不建议&#xff09; Draw RPM 包下载链接 RPM 包直接基于Linux图形化能力部署&#xff0c;服务器类型的Linux系统启动RPM包安装的Draw可能比较复杂 系统版本 ## 1.…

(一)正点原子I.MX6ULL kernel6.1移植准备

一、概述 学完了正点原子的I.MX6ULL移植&#xff0c;正点原子的教程是基于Ubuntu18&#xff0c;使用的是4.1.15的内核&#xff0c;很多年前的了。NXP官方也发布了新的6.1的内核&#xff0c;以及2022.04的uboot。 本文分享一下基于Ubuntu22.04&#xff08;6.2.0-36-generic&…

Unity中Shader的雾效

文章目录 前言一、Unity中的雾效在哪开启二、Unity中不同种类雾的区别1、线性雾2、指数雾1&#xff08;推荐用这个&#xff0c;兼具效果和性能&#xff09;3、指数雾2&#xff08;效果更真实&#xff0c;性能消耗多&#xff09; 三、在我们自己的Shader中实现判断&#xff0c;是…

PHP实用工具:实现Excel转Mysql工具自动字段长度

所得Mysql语句一般适合查立得万能搜等mysql只查不改的系统。 <?php $t "Excel转Mysql工具"; $s "Excel复制过来的二维结构表内容,第一行各列字段名(列标题),以后一行一条数据"; $yw "chalide".date("YmdH"); $datedir "…

多关键字dp,P1687 机器人小Q

P1687 机器人小Q - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目描述 成功派送完这个大单后&#xff0c;餐厅决定引入一名新成员&#xff1a;机器人小 Q。小 Q 的到来让餐厅的客源增加了不少&#xff0c;但是&#xff0c;一段时间之后&#xff0c;新的问题又出现了&…

【c++随笔12】继承

【c随笔12】继承 一、继承1、继承的概念2、3种继承方式3、父类和子类对象赋值转换4、继承中的作用域——隐藏5、继承与友元6、继承与静态成员 二、继承和子类默认成员函数1、子类构造函数 二、子类拷贝构造函数3、子类的赋值重载4、子类析构函数 三、单继承、多继承、菱形继承1…

设计模式-工厂方法

工厂方法是一种创建型设计模式&#xff0c;其在父类中提供一个创建对象的方法&#xff0c;允许子类决定实例化对象的类型。 问题 假设你开设了一个汽车工厂。创业初期工厂只能生产宝马这一款车&#xff0c;因此大部分代码都位于名为宝马的类中。 工厂效益非常好&#xff0c;为…

IDEA搭建ssm项目

此前&#xff0c;我一直在用eclipse编辑器做java项目&#xff0c;现在初次使用IDEA编辑器&#xff0c;在这里&#xff0c;我记录了使用IDEA环境下搭建ssm项目的过程。 创建Maven项目&#xff0c;如下 右击TEST4项目&#xff0c;在弹出的菜单中选择Add Framework Support 在弹出…

屏幕提词软件Presentation Prompter mac中文版使用方法

Presentation Prompter for mac是一款屏幕提词器软件&#xff0c;它可以将您的Mac电脑快速变成提词器&#xff0c;支持编写或导入&#xff0c;可以在一个或多个屏幕上平滑地滚动&#xff0c;Presentation Prompter 下载是为适用于现场表演者&#xff0c;新闻广播员&#xff0c;…

计算机网络——b站王道考研笔记

第一章 计算机网络体系结构 1.计算机网络概述 &#xff08;1&#xff09;概念 计算机网络是一个将分散的&#xff0c;具有独立功能的计算机系统&#xff0c;通过通信设备与线路连接起来&#xff0c;由功能完善的软件实现资源共享和信息传递的系统&#xff1b; 是互连的&#…

数据分析面试题1

1.右表为一组数据&#xff0c;尝试进行简单分析&#xff0c;并给出结论&#xff08;使用公式和图表辅助&#xff09; ①理解数据 userid&#xff1a;用户id神兽印记消耗数量 ②数据清洗 冻结首行&#xff0c;将列标题的英文字段转换成汉字字段检查是否有重复项&#xff1a;…

Leetcode—20.有效的括号【简单】

2023每日刷题&#xff08;二十七&#xff09; Leetcode—20.有效的括号 C实现代码 class Solution { public:bool isValid(string s) {stack<char> arr;int len s.size();if(len 1) {return false;}for(int i 0; i < len; i) {if(s[i] ( || s[i] [ || s[i] {)…

基于springboot实现沁园健身房预约管理系统【项目源码】计算机毕业设计

基于springboot实现沁园健身房预约管理系统演示 B/S架构 B/S结构是目前使用最多的结构模式&#xff0c;它可以使得系统的开发更加的简单&#xff0c;好操作&#xff0c;而且还可以对其进行维护。使用该结构时只需要在计算机中安装数据库&#xff0c;和一些很常用的浏览器就可以…

Flink

1. Flink简介 1.1 初识Flink Flink项目的理念是&#xff1a;“Apache Flink是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源的有状态的流处理框架”。 Apache Flink是一个框架和分布式处理引擎&#xff0c;用于对无界和有界数据流进行有状态计算。Fl…

进亦忧,退亦忧,Github Copilot 集成进入 Visual Studio 带来的思考

开篇想到《岳阳楼记》的结尾&#xff1a; 不以物喜&#xff0c;不以己悲&#xff1b;居庙堂之高则忧其民&#xff1b;处江湖之远则忧其君。是进亦忧&#xff0c;退亦忧。然则何时而乐耶&#xff1f;其必曰&#xff1a;“先天下之忧而忧&#xff0c;后天下之乐而乐”乎。未来30…

HarmonyOS 高级特性

引言 本章将探讨 HarmonyOS 的高级特性&#xff0c;包括分布式能力、安全机制和性能优化。这些特性可以帮助你构建更强大、更安全、更高效的应用。 目录 HarmonyOS 的分布式能力HarmonyOS 的安全机制HarmonyOS 的性能优化总结 1. HarmonyOS 的分布式能力 HarmonyOS 的分布…

Python 使用tkinter复刻Windows记事本UI和菜单功能(一)

下一篇&#xff1a;Python 使用tkinter复刻Windows记事本UI和菜单&#xff08;二&#xff09;-CSDN博客 介绍&#xff1a; Windows操作系统中自带了一款记事本应用程序&#xff0c;通常用于记录文字信息&#xff0c;具有简单文本编辑功能。Windows的记事本可以新建、打开、保…