文章目录
- 6.3 Interacting with Web APIs (网络相关的API交互)
- 6.4 Interacting with Databases(与数据库的交互)
6.3 Interacting with Web APIs (网络相关的API交互)
很多网站都有公开的API,通过JSON等格式提供数据流。有很多方法可以访问这些API,这里推荐一个易用的requests包。
找到github里pandas最新的30个issues,制作一个GET HTTP request, 通过使用requests包:
import pandas as pd
import numpy as np
import requests
url = 'https://api.github.com/repos/pandas-dev/pandas/issues'
resp = requests.get(url)
resp
<Response [200]>
response的json方法能返回一个dict,包含可以解析为python object的JSON:
data = resp.json()
data[0]['title']
'Optimize data type'
data[0]
{'assignee': None,'assignees': [],'author_association': 'NONE','body': 'Hi guys, i\'m user of mysql\r\nwe have an "function" PROCEDURE ANALYSE\r\nhttps://dev.mysql.com/doc/refman/5.5/en/procedure-analyse.html\r\n\r\nit get all "dataframe" and show what\'s the best "dtype", could we do something like it in Pandas?\r\n\r\nthanks!','closed_at': None,'comments': 1,'comments_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/comments','created_at': '2017-11-13T22:51:32Z','events_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/events','html_url': 'https://github.com/pandas-dev/pandas/issues/18272','id': 273606786,'labels': [],'labels_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/labels{/name}','locked': False,'milestone': None,'number': 18272,'repository_url': 'https://api.github.com/repos/pandas-dev/pandas','state': 'open','title': 'Optimize data type','updated_at': '2017-11-13T22:57:27Z','url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272','user': {'avatar_url': 'https://avatars0.githubusercontent.com/u/2468782?v=4','events_url': 'https://api.github.com/users/rspadim/events{/privacy}','followers_url': 'https://api.github.com/users/rspadim/followers','following_url': 'https://api.github.com/users/rspadim/following{/other_user}','gists_url': 'https://api.github.com/users/rspadim/gists{/gist_id}','gravatar_id': '','html_url': 'https://github.com/rspadim','id': 2468782,'login': 'rspadim','organizations_url': 'https://api.github.com/users/rspadim/orgs','received_events_url': 'https://api.github.com/users/rspadim/received_events','repos_url': 'https://api.github.com/users/rspadim/repos','site_admin': False,'starred_url': 'https://api.github.com/users/rspadim/starred{/owner}{/repo}','subscriptions_url': 'https://api.github.com/users/rspadim/subscriptions','type': 'User','url': 'https://api.github.com/users/rspadim'}}
data中的每一个元素都是一个dict,这个dict就是在github上找到的issue页面上的信息。我们可以把data传给DataFrame并提取感兴趣的部分:
issues = pd.DataFrame(data, columns=['number', 'title', 'labels', 'state'])
issues
| number | title | labels | state | |
|---|---|---|---|---|
| 0 | 18272 | Optimize data type | [] | open |
| 1 | 18271 | BUG: Series.rank(pct=True).max() != 1 for a la... | [] | open |
| 2 | 18270 | (Series|DataFrame) datetimelike ops | [] | open |
| 3 | 18268 | DOC: update Series.combine/DataFrame.combine d... | [] | open |
| 4 | 18266 | DOC: updated .combine_first doc strings | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 5 | 18265 | Calling DataFrame.stack on an out-of-order col... | [] | open |
| 6 | 18264 | cleaned up imports | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 7 | 18263 | Tslibs offsets paramd | [] | open |
| 8 | 18262 | DEPR: let's deprecate | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 9 | 18258 | DEPR: deprecate (Sparse)Series.from_array | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 10 | 18255 | ENH/PERF: Add cache='infer' to to_datetime | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 11 | 18250 | Categorical.replace() unexpectedly returns non... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 12 | 18246 | pandas.MultiIndex.reorder_levels has no inplac... | [] | open |
| 13 | 18245 | TST: test tz-aware DatetimeIndex as separate m... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 14 | 18244 | RLS 0.21.1 | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 15 | 18243 | DEPR: deprecate .ftypes, get_ftype_counts | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 16 | 18242 | CLN: Remove days, seconds and microseconds pro... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 17 | 18241 | DEPS: drop 2.7 support | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 18 | 18238 | BUG: Fix filter method so that accepts byte an... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 19 | 18237 | Deprecate Series.asobject, Index.asobject, ren... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 20 | 18236 | df.plot() very slow compared to explicit matpl... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 21 | 18235 | Quarter.onOffset looks fishy | [] | open |
| 22 | 18231 | Reduce copying of input data on Series constru... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 23 | 18226 | Patch __init__ to prevent passing invalid kwds | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 24 | 18222 | DataFrame.plot() produces incorrect legend lab... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 25 | 18220 | DataFrame.groupy renames columns when given a ... | [] | open |
| 26 | 18217 | Deprecate Index.summary | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 27 | 18216 | Pass kwargs from read_parquet() to the underly... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 28 | 18215 | DOC/DEPR: ensure that @deprecated functions ha... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 29 | 18213 | Deprecate Series.from_array ? | [{'url': 'https://api.github.com/repos/pandas-... | open |
6.4 Interacting with Databases(与数据库的交互)
如果在工作中,大部分数据并不会以text或excel的格式存储。最广泛使用的是SQL-based的关系型数据库(SQL Server,PostgreSQL,MySQL)。选择数据库通常取决于性能,数据整合性,实际应用的可扩展性。
读取SQL到DataFrame非常直观,pandas中有一些函数能简化这个过程。举个例子,这里创建一个SQLite数据库,通过使用python内建的sqlite3 driver:
import sqlite3
import pandas as pd
query = """
CREATE TABLE test
(a VARCHAR(20), b VARCHAR(20),c REAL, d INTEGER
);"""
con = sqlite3.connect('../examples/mydata.sqlite')
con.execute(query)
<sqlite3.Cursor at 0x1049931f0>
con.commit()
然后我们插入几行数据:
data = [('Atlanta', 'Georgia', 1.25, 6),('Tallahassee', 'Florida', 2.6, 3),('Sacramento', 'California', 1.7, 5)]
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
con.executemany(stmt, data)
<sqlite3.Cursor at 0x1049932d0>
con.commit()
大部分python的SQL驱动(PyODBC, psycopg2, MySQLdb, pymssql, 等)返回a list of tuple,当从一个表格选择数据的时候:
cursor = con.execute('select * from test')
rows = cursor.fetchall()
rows
[('Atlanta', 'Georgia', 1.25, 6),('Tallahassee', 'Florida', 2.6, 3),('Sacramento', 'California', 1.7, 5)]
我们可以把list of tuples传递给DataFrame,但是我们也需要column names,包含cursor的description属性:
cursor.description
(('a', None, None, None, None, None, None),('b', None, None, None, None, None, None),('c', None, None, None, None, None, None),('d', None, None, None, None, None, None))
pd.DataFrame(rows, columns=[x[0] for x in cursor.description])
| a | b | c | d | |
|---|---|---|---|---|
| 0 | Atlanta | Georgia | 1.25 | 6 |
| 1 | Tallahassee | Florida | 2.60 | 3 |
| 2 | Sacramento | California | 1.70 | 5 |
我们不希望每次询问数据库的时候都重复以上步骤,这样对计算机很不好(逐步对计算机系统或文件做小改动导致大的损害)。SQLAlchemy计划是一个六星的Python SQL工具箱,它能抽象出不同SQL数据库之间的不同。pandas有一个read_sql函数,能让我们从SQLAlchemy connection从读取数据。这里我们用SQLAlchemy连接到同一个SQLite数据库,并从之前创建的表格读取数据:
import sqlalchemy as sqla
db = sqla.create_engine('sqlite:///../examples/mydata.sqlite')
pd.read_sql('select * from test', db)
| a | b | c | d | |
|---|---|---|---|---|
| 0 | Atlanta | Georgia | 1.25 | 6 |
| 1 | Tallahassee | Florida | 2.60 | 3 |
| 2 | Sacramento | California | 1.70 | 5 |