PaddleX数据集规范

目录

1、图像分类任务

 2、目标检测任务

3、主体检测任务

4、图像分割任务

5、特征检索任务

6、文本检测任务

7、文本识别任务

8、版面分析任务

9、表格识别任务

10、关键信息抽取任务

11、点云3D目标检测任务

12、多目3D目标检测任务

13、单目3D目标检测任务

14、长时序预测任务


1、图像分类任务

PaddleX针对图像分类任务定义的数据集,名称是ClsDataset,组织结构和标注格式如下。


dataset_dir    # 数据集根目录,目录名称可以改变
├── images     # 图像的保存目录,目录名称可以改变,但要注意与train.txt、val.txt的内容对应
├── label.txt  # 标注id和类别名称的对应关系,文件名称不可改变。每行给出类别id和类别名称,内容举例:45 wallflower
├── train.txt  # 训练集标注文件,文件名称不可改变。每行给出图像路径和图像类别id,使用空格分隔,内容举例:images/image_06765.jpg 0
└── val.txt    # 验证集标注文件,文件名称不可改变。每行给出图像路径和图像类别id,使用空格分隔,内容举例:images/image_06767.jpg 10

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 图像分类任务数据集说明。

如果您已有数据集且数据集格式为如下格式,但是没有标注文件,可以使用脚本将已有的数据集生成标注文件。


dataset_dir          # 数据集根目录,目录名称可以改变      
├── images           # 图像的保存目录,目录名称可以改变├── train         # 训练集目录,目录名称可以改变├── class0     # 类名字,最好是有意义的名字,否则生成的类别映射文件label.txt无意义├── xxx.jpg # 图片,此处支持层级嵌套├── xxx.jpg # 图片,此处支持层级嵌套...      ├── class1     # 类名字,最好是有意义的名字,否则生成的类别映射文件label.txt无意义...├── val           # 验证集目录,目录名称可以改变

wget https://paddleclas.bj.bcebos.com/tools/create_cls_trainval_lists.py
# 生成训练标注文件train.txt和类别映射文件label.txt,存储于`path/to/train_dataset`同级目录中
python create_cls_trainval_lists.py --dataset_path path/to/train_dataset  --save_img_list_path train.txt
# 生成验证标注文件val.txt和类别映射文件label.txt,存储于`path/to/val_dataset`同级目录中
python create_cls_trainval_lists.py --dataset_path path/to/val_dataset  --save_img_list_path val.txt

如果您使用的是老版本PaddleX的图像分类数据集,在经过训练集/验证集/测试集切分后,手动将train_list.txt、val_list.txt、test_list.txt修改为train.txt、val.txt、test.txt,并且按照规则修改label.txt即可。


# 原版label.txt
classname1
classname2
classname3
...

# 修改后的label.txt
0 classname1
1 classname2
2 classname3
...

 2、目标检测任务

PaddleX针对目标检测任务定义的数据集,名称是COCODetDataset,组织结构和标注格式如下。


dataset_dir                  # 数据集根目录,目录名称可以改变
├── annotations              # 标注文件的保存目录,目录名称不可改变
│   ├── instance_train.json  # 训练集标注文件,文件名称不可改变,采用COCO标注格式
│   └── instance_val.json    # 验证集标注文件,文件名称不可改变,采用COCO标注格式
└── images                   # 图像的保存目录,目录名称不可改变

标注文件采用COCO格式。请大家参考上述规范准备数据,此外可以参考:示例数据集 和 目标检测数据准备。

对于使用LabelMe标注的数据集,或是VOC格式的数据集,可以使用x2coco脚本将数据集转换成COCO格式,x2coco脚本使用方法如下:


# LabelMe标注格式转COCO,这里同步进行了训练集/验证集/测试集的划分
python x2coco.py --dataset_type labelme --json_input_dir ./labelme_annos/ --image_input_dir ./labelme_imgs/ --output_dir ./cocome/ --train_proportion 0.8 --val_proportion 0.2 --test_proportion 0.0# VOC标注格式转COCO
# 不支持自动划分训练集/验证集,需要提前准备好train.txt以及val.txt
python x2coco.py --dataset_type voc --voc_anno_dir path/to/VOC_annotations/ --voc_anno_list path/to/train.txt --voc_out_name instance_train.json
python x2coco.py --dataset_type voc --voc_anno_dir path/to/VOC_annotations/ --voc_anno_list path/to/val.txt --voc_out_name instance_val.json 

当大家使用老版PaddleX的目标检测数据集时,请参考上述VOC格式数据集的转换方式。

3、主体检测任务

PaddleX针对主体检测任务定义的数据集,和目标检测相同,名称是COCODetDataset,组织结构和标注格式如下。


dataset_dir                  # 数据集根目录,目录名称可以改变
├── annotations              # 标注文件的保存目录,目录名称不可改变
│   ├── instance_train.json  # 训练集标注文件,文件名称不可改变,采用coco标注格式
│   └── instance_val.json    # 验证集标注文件,文件名称不可改变,采用coco标注格式
└── images                   # 图像文件的保存目录,目录名称不可改变

需要注意的是,对于主体检测任务,全部检测框对应的类别都是前景 ,因此数据集中只包含1个前景类别。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 目标检测数据准备。

4、图像分割任务

PaddleX针对图像分割任务定义的数据集,名称是SegDataset,组织结构和标注格式如下。


dataset_dir         # 数据集根目录,目录名称可以改变
├── annotations     # 存放标注图像的目录,目录名称可以改变,注意与标识文件的内容相对应
├── images          # 存放原始图像的目录,目录名称可以改变,注意与标识文件的内容相对应
├── train.txt       # 训练集标注文件,文件名称不可改变。每行是原始图像路径和标注图像路径,使用空格分隔,内容举例:images/P0005.jpg annotations/P0005.png
└── val.txt         # 验证集标注文件,文件名称不可改变。每行是原始图像路径和标注图像路径,使用空格分隔,内容举例:images/N0139.jpg annotations/N0139.png

标注图像是单通道灰度图或者单通道伪彩色图,建议使用PNG格式保存。标注图像中每种像素值代表一个类别,类别必须从0开始依次递增,例如0、1、2、3表示4种类别。标注图像的像素存储是8bit,所以标注类别最多支持256类。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 图像语义分割数据准备。

使用LabelMe软件,大家可以参考文档标注图像;标注完成后,可以使用脚本将标注json文件转换成标注图像(如下代码示例);转换完成后,可以参考文档进行切分。


# 下载转换脚本,安装必要依赖。
wget https://paddleseg.bj.bcebos.com/tools/labelme2seg.py
# 执行转换。第一个input_dir参数是原始图像和json标注文件的保存目录,第二个output_dir参数是转换后数据集的保存目录。
python labelme2seg.py input_dir output_dir

如果大家使用老版PaddleX的图像分割数据集,当没有进行训练集/验证集/测试集的划分时,参考文档进行切分即可;当已经使用老版PaddleX切分好训练集/验证集/测试集时,手动将train_list.txt、val_list.txt、test_list.txt修改为train.txt、val.txt、test.txt即可。

5、特征检索任务

PaddleX针对特征检索任务定义的数据集,名称是ShiTuDataset,组织结构和标注格式如下。


dataset_dir    # 数据集根目录,目录名称可以改变
├── images     # 图像的保存目录,目录名称可以改变,但要注意与train.txt, val.txt的内容对应
├── train.txt  # 训练集标注文件,文件名称不可改变。内容举例:images/111085122871_0.JPG 1 1
└── val.txt    # 验证集标注文件,文件名称不可改变。内容举例:images/251952414262_0.JPG 575 4169

训练集标注文件和验证集标注文件 ,每行数据使用“空格”分隔,三列数据的含义分别是图像路径、 图像类别id、图像id。

与分类任务数据集不同,图像检索任务的数据集分为以下三部分:

  • 训练集合(train dataset):用来训练模型,使模型能够学习该集合的图像特征。
  • 底库数据集合(gallery dataset):用来提供图像检索任务中的底库数据,该集合可与训练集或测试集相同,也可以不同,当与训练集相同时,测试集的类别体系应与训练集的类别体系相同。
  • 测试数据集合(query dataset):用来测试模型的好坏,通常要对测试集的每一张测试图片进行特征提取,之后和底库数据的特征进行距离匹配,得到识别结果,后根据识别结果计算整个测试集的指标。

注意:在样例数据集中,验证数据集(val.txt)中既是 gallery dataset,也是 query dataset,因此当 gallery dataset 和 query dataset 相同时,为了去掉检索得到的第一个数据(检索图片本身无须评估),每个数据需要对应一个 unique id(每张图片的 id 不同即可,可以用行号来表示 unique id),用于后续评测 mAP、recall@1 等指标。

请大家参考上述规范准备数据,此外可以参考:示例数据集

6、文本检测任务

PaddleX针对文本检测任务定义的数据集,名称是TextDetDataset,组织结构和标注格式如下。


dataset_dir     # 数据集根目录,目录名称可以改变
├── images      # 存放图像的目录,目录名称可以改变,但要注意和train.txt val.txt的内容对应
├── train.txt   # 训练集标注文件,文件名称不可改变,内容举例:images/img_0.jpg 	 [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
└── val.txt     # 验证集标注文件,文件名称不可改变,内容举例:images/img_61.jpg 	 [{"transcription": "TEXT", "points": [[31, 10], [310, 140], [420, 220], [310, 170]]}, {...}]

标注文件的每行内容是一张图像的路径和一个组成元素是字典的列表,路径和列表必须使用制表符’\t‘进行分隔,不可使用空格进行分隔。

对于组成元素是字典的列表,字典中 points 表示文本框的四个顶点的坐标(x, y),从左上角的顶点开始顺时针排;字典中transcription表示该文本框的文字,若transcription 的内容为“###”时,表示该文本框无效,不参与训练。

如果您使用了PPOCRLabel标注数据,只需要在完成数据集划分后将文字检测(det)目录中的det_gt_train.txt改名为train.txtdet_gt_test.txt改名为val.txt即可。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 文本检测数据准备。

7、文本识别任务

PaddleX针对文字识别任务定义的数据集,名称是MSTextRecDataset,组织结构和标注格式如下。


dataset_dir      # 数据集根目录,目录名称可以改变
├── images       # 存放图像的目录,目录名称可以改变,但要注意和train.txt val.txt的内容对应
├── train.txt    # 训练集标注文件,文件名称不可改变,内容举例:images/111085122871_0.JPG 	 百度
├── val.txt      # 验证集标注文件,文件名称不可改变,内容举例:images/111085122871_0.JPG 	 百度
└── dict.txt     # 字典文件,文件名称不可改变。字典文件将所有出现的字符映射为字典的索引,每行为一个单字,内容举例:百

标注文件的每行内容是图像路径和文本内容,两者必须使用制表符’\t‘进行分隔,不可使用空格进行分隔。

如果您使用了PPOCRLabel标注数据,只需要在完成数据集划分后将文字识别(rec)目录中的rec_gt_train.txt改名为train.txtrec_gt_test.txt改名为val.txt即可。

字典文件dict.txt的每行是一个单字,如"a"、"度"、"3"等,如下所示:


a
度
3

推荐使用 PP-OCR 默认字典(右击链接下载即可) 并重命名为 dict.txt ,也可使用脚本 gen_dict.py 根据训练/评估数据自动生成字典:


# 将脚本下载至 {dataset_dir} 目录下
wget https://paddleocr.bj.bcebos.com/script/gen_dict.py
# 执行转化,默认训练集标注文件为"train.txt", 验证集标注文件为"val.txt", 生成的字典文件为"dict.txt"
python gen_dict.py

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 文本识别数据准备。

8、版面分析任务

PaddleX针对版面分析任务定义的数据集,和目标检测相同,名称是COCODetDataset,组织结构和标注格式如下。


dataset_dir                    # 数据集根目录,目录名称可以改变
├── annotations                # 标注文件的保存目录,目录名称不可改变
│   ├── instance_train.json    # 训练集标注文件,文件名称不可改变,采用coco标注格式
│   └── instance_val.json      # 验证集标注文件,文件名称不可改变,采用coco标注格式
└── images                     # 图像的保存目录,目录名称不可改变

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 版面分析数据准备。

9、表格识别任务

PaddleX针对表格识别任务定义的数据集,名称是PubTabTableRecDataset,组织结构和标注格式如下。


dataset_dir    # 数据集根目录,目录名称可以改变
├── images     # 图像的保存目录,目录名称可以改变,但要注意和train.txt val.txt的内容对应
├── train.txt  # 训练集标注文件,文件名称不可改变
└── val.txt    # 验证集标注文件,文件名称不可改变

标注文件采用PubTabNet数据集格式进行标注,每行内容都是一个字典。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 表格识别数据准备。

10、关键信息抽取任务

PaddleX针对关键信息抽取任务定义的数据集,名称是KieDataset,组织结构和标注格式如下。


dataset_dir     # 数据集根目录,目录名称可以改变
├── images      # 图像的保存目录,目录名称可以改变,但要注意和train.txt val.txt的内容对应
├── train.txt   # 训练集标注文件,文件名称不可改变,内容举例:images/111085122871_0.JPG 	 [{"transcription": "汇丰晋信", "label": "other", "points": [[104, 114], [530, 114], [530, 175], [104, 175]], "id": 1, "linking": []}, {"transcription": "受理时间:", "label": "question", "points": [[126, 267], [266, 267], [266, 305], [126, 305]], "id": 7, "linking": [[7, 13]]}, {"transcription": "2020.6.15", "label": "answer", "points": [[321, 239], [537, 239], [537, 285], [321, 285]], "id": 13, "linking": [[7, 13]]}]
├── val.txt     # 验证集标注文件,文件名称不可改变,内容举例:images/111085122871_0.JPG 	 [{"transcription": "汇丰晋信", "label": "other", "points": [[104, 114], [530, 114], [530, 175], [104, 175]], "id": 1, "linking": []}, {"transcription": "受理时间:", "label": "question", "points": [[126, 267], [266, 267], [266, 305], [126, 305]], "id": 7, "linking": [[7, 13]]}, {"transcription": "2020.6.15", "label": "answer", "points": [[321, 239], [537, 239], [537, 285], [321, 285]], "id": 13, "linking": [[7, 13]]}]
└──dict.txt     # 标签文件,文件名称不可改变,每行代表一个标签,与标注文件label字段对应且大小写不敏感,内容举例:OTHER

标注文件的每行内容是图像路径和标注信息。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 关键信息抽取数据准备。

11、点云3D目标检测任务

PaddleX针对点云3D目标检测任务定义的数据集,名称是NuscenesPCDetDataset,组织结构和标注格式如下。


dataset_dir           # 数据集根目录,目录名称可以改变
├── samples           # 关键帧采样目录,目录名称不可改变
├── sweeps            # 连续帧目录,目录名称不可改变
├── maps              # 采样地图目录,目录名称不可改变
├── v1.0-trainval     # 包含各类信息,如传感器、标注等信息,目录名称不可改变
├── gt_database_train_nsweeps10_withvelo       #  真值库目录,目录名称不可改变├── anno_info_train_nsweeps10_withvelo.pkl  # 标注信息├── bicycle                                 # bicycle类别点云文件│   ├── 20646_bicycle_4.bin│   ├── ...├── car├── ...

数据集采用nuScenes格式进行组织和标注,更详细的数据准备说明可参考:CenterPoint 数据准备说明。

需要注意的是,nuScenes数据集根据nuscenes-devkit开发包进行相应的数据读取及训练集和验证集的划分。更详细的介绍请阅读nuScenes官网介绍

请大家参考上述规范准备数据,此外可以参考:示例数据集。

12、多目3D目标检测任务

PaddleX针对多目3D目标检测任务定义的数据集,名称是NuscenesMVDetDataset,组织结构和标注格式如下。


dataset_dir           # 数据集根目录,目录名称可以改变
├── samples           # 关键帧采样目录,目录名称不可改变
├── sweeps            # 连续帧目录,目录名称不可改变
├── maps              # 采样地图目录,目录名称不可改变
├── v1.0-trainval     # 包含各类信息,如传感器、标注等信息,目录名称不可改变
├── nuscenes_annotation_train.pkl  # 标识训练集,文件名称不可改变
├── nuscenes_annotation_val.pkl    # 标识验证集,文件名称不可改变

数据集采用nuScenes格式进行组织和标注,更详细的数据准备说明可参考:PETR 数据准备说明。

需要注意的是,nuScenes数据集根据nuscenes-devkit开发包进行相应的数据读取及训练集和验证集的划分。更详细的介绍请阅读nuScenes官网介绍

请大家参考上述规范准备数据,此外可以参考:示例数据集

13、单目3D目标检测任务

PaddleX针对单目3D目标检测任务定义的数据集,名称是KittiDepthMonoDetDataset,组织结构和标注格式如下。


dataset_dir          # 数据集根目录,目录名称可以改变
├── ImageSets        # 标识目录,目录名称不可改变
|      ├── train.txt   # 标识训练集,文件名称不可改变,内容举例:000012
|      └── val.txt     # 标识验证集,文件名称不可改变,内容举例:000012
├── training         # 训练、验证目录,目录名称不可改变
|      ├── calib       # 参数目录,目录名称不可改变
|      ├── depth_2     # 深度目录,目录名称不可改变
|      ├── image_2     # 图像目录,目录名称不可改变
|      └── label_2     # 标注目录,目录名称不可改变
├── kitti_infos_train.pkl # 标识训练集,文件名称不可改变
├── kitti_infos_val.pkl   # 标识验证集,文件名称不可改变
...

标注文件采用KITTI格式进行标注,calib、depth_2、image_2和label_2里的文件名称需要保持一致。

请大家参考上述规范准备数据,此外可以参考:示例数据集 和 CaDDN 数据准备说明。

14、长时序预测任务

PaddleX针对长时序预测任务定义的数据集,名称是TSDataset,组织结构和标注格式如下。


dataset_dir         # 数据集根目录,目录名称可以改变     
├── train.csv       # 训练集标注文件,文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。
├── val.csv         # 验证集标注文件,文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。
└── test.csv        # 测试集标注文件(可选),文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。

请大家参考上述规范准备数据,此外可以参考: 示例数据集和TS数据准备。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/133001.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS鼠标悬浮变小手

当我们在网页设计中需要用户点击或者选择某个元素时,很多时候会使用鼠标悬浮变小手的效果,这种效果可以让用户更快速的完成操作,提高用户体验。 在CSS中设置鼠标悬浮变小手效果非常简单,只需要使用cursor属性即可。以下是具体步骤…

理德外汇: 美元暴跌创近一个半月新低

10月30日-11月3日市场综述:央行超级周果然名不虚传!上周美联储鸽派暂停升息令全球股债疯狂暴拉,加上非农就业数据疲弱,市场对美联储再加息的预期降温,美股创下今年最大单周增幅,美元持续下滑,与…

【Redis】Redis整合SSMRedis中的缓存穿透、雪崩、击穿的原因以及解决方案(详解)

目录: 目录 一,SSM整合redis 二,redis注解式缓存 三,Redis中的缓存穿透、雪崩、击穿的原因以及解决方案(附图) 一,SSM整合redis 1.原因: 整合SSM和Redis可以提升系统的性能、可…

2023 年如何学习编程

在当今的数字时代,程序员的角色比以往任何时候都更加重要。编程技能几乎在每个行业都受到高度重视和追捧。从科技初创公司到成熟企业,对具有适当技术能力的开发人员的需求巨大。 无论是考虑转行还是开始,现在都是成为一名程序员的激动人心的…

2023世界传感器大会开幕,汉威科技多领域创新产品引瞩目

11月5日,2023世界传感器大会在郑州国际会展中心正式拉开帷幕。据悉,本次大会由河南省人民政府、中国科学技术协会主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。 大会由“一会一赛一展”组成&#…

【Liunx系统编程】命令模式3

目录 一,zip/unzip压缩指令 二,tar打包/压缩/解包指令 三,uname获取系统信息指令 四,Liunx下常用且重要的按键和关机指令 五,文件之间的互传 1,Windows与Linux之间的互传 2,Linux系统之间…

3.22每日一题(二重积分求平面区域面积)

先复习求平面积分的公式 注:面对平面积分直接使用二重积分对1求积分即可;所以只需要背二重积分的两个公式: 1、直角坐标下对1积分 2、极坐标下对1积分 xy-1是等轴双曲线!! 1、先画图定区域 2、选择先对x积分还是先对…

深入了解Typescript中type和interface具体区别?

前言 新手刚开始学习 TypeScript 时,往往会对 type 和 interface 的使用场景和方式感到困惑。因此,本文旨在总结 type 和 interface 的概念和用法。 一、概念 type:类型别名 概念:允许为一个或多个数据类型(例如 str…

android studio app红叉无法编译

1.起源 今天前台小姐姐穿了一个白色的超短裙,和小姐姐聊了聊人生梦想,聊生活趣事,回到工位你马....报了一个这错误,无法运行了,明天就要打包测试了,顿时菊花一紧,急了一头汗,这你马咋回事,看了旁边的产品肥仔,迷着小眼露出了银建的笑容.开始排雷.... 意思就是说gradle初始化失…

WARNING: tokenization mismatch: 403 vs. 406. (ignored) LLaVa

LLaVa换BaiChuan底座报错 WARNING: tokenization mismatch: 403 vs. 406. (ignored) 解决 cd ~/.cache/huggingface/hub/models--baichuan-inc--Baichuan2-7B-Base/snapshots/0cc6a61c06cd0734270151109d07cf86ef0ace53 vim tokenizer_config.json把bos_token改成true&#…

(四) Python 使用Pandas生成日报

一、介绍 Pandas是Python中一个强大的数据处理库,它提供了许多功能强大的数据结构和数据分析工具。在本文中,我们将介绍Pandas的基本概念和如何使用它生成一个包含今天到未来20个工作日的日期列表的Excel文件。 Pandas提供了大量的数据结构和数据分析工…

RK3568平台 内存的基本概念

一.Linux的Page Cache page cache,又称pcache,其中文名称为页高速缓冲存储器,简称页高缓。page cache的大小为一页,通常为4K。在linux读写文件时,它用于缓存文件的逻辑内容,从而加快对磁盘上映像和数据的访…

评估大型语言模型:综述

论文地址:https://arxiv.org/pdf/2310.19736v2.pdf github: tjunlp-lab/awesome-llms-evaluation-… 发表团队:Tianjin University 摘要 将LLM评估划分三点:知识和能力评估、一致性评估和安全性评估。特定领域化评估benchmark评…

在jupyter中使用R

如果想在Jupyter Notebook中使用R语言,以下几个步骤操作可行: 1、启动Anaconda Prompt 2、进入R的安装位置,切换到R的安装位置:D:\Program Files\R\R-3.4.3\bin,启动R,具体代码操作步骤如下,在…

vue的rules验证失效,部分可以部分又失效的原因

vue的rules验证失效,部分可以部分又失效的原因 很多百度都有,但是我这里遇到了一个特别的,那就是prop没有写全,导致验证某一个失效 例子: 正常写法 el-form-item....多个省略<el-form-item label"胶币" prop"cost"><el-input v-model"form.…

1200*D. Same Differences(数学推公式)

Problem - 1520D - Codeforces 解析&#xff1a; 统计 a [ i ] - i #include<bits/stdc.h> using namespace std; #define int long long const int N2e55; int t,n,a[N]; signed main(){scanf("%lld",&t);while(t--){scanf("%lld",&n);…

AI芯片架构体系综述:芯片类型CPU\GPU\FPGA\ASIC以及指令集CSIS\RISC介绍

大模型的发展意味着算力变的越发重要&#xff0c;因为大国间科技竞争的关系&#xff0c;国内AI从业方在未来的一段时间存在着算力不确定性的问题&#xff0c;与之而来的是许多新型算力替代方案的产生。如何从架构关系上很好的理解计算芯片的种类&#xff0c;并且从计算类型、生…

【1106】记录

有关python环境&#xff01;&#xff01;&#xff01; 1、python解释器就是 python 3.7.2 之类的。 VSCode 是代码编辑器。 下图的每一个都是可选的python环境&#xff0c;Python 3.8.3&#xff08;‘base’&#xff09;是下载在电脑上的python环境&#xff08;下载miniConda时…

【LeetCode】318. 最大单词长度乘积

318. 最大单词长度乘积 难度&#xff1a;中等 题目 给你一个字符串数组 words &#xff0c;找出并返回 length(words[i]) * length(words[j]) 的最大值&#xff0c;并且这两个单词不含有公共字母。如果不存在这样的两个单词&#xff0c;返回 0 。 示例 1&#xff1a; 输入…

js深度学习(三)

循环 var i0 for(;i<10;){ console.log(i) i } while(i<10){ console.log(i) i } var i100; for(;i--;){ console.log(i) }2、引用值 typeof&#xff1a;number string boolean Object(object/array/null出现是为了指定为空对象/)undefined function typeof a >unde…