MySQL之事务、存储引擎、索引

文章目录

  • 前言
  • 一、事务
    • 1.概念
    • 2.操作
      • (1)开启事务
      • (2)提交事务
      • (3)回滚事务
    • 3.四大特性ACID
      • (1)原子性(Atomicity)
      • (2)一致性(Consistency)
      • (3)隔离性(Isolation)
      • (4)持久性(Durability)
    • 4.并发事务问题
      • (1)脏读
      • (2)不可重复读
      • (3)幻读
    • 5.隔离级别
      • (1)事务隔离级别
      • (2)查看事务隔离级别
      • (3)设置事务隔离级别
      • (4)隔离级别演示
  • 二、存储引擎
    • 1.MySQL体系结构
    • 2.简介
    • 3.InnoDB
    • 4.MyISAM和Memory
    • 5.区别
    • 6.选择
  • 三、索引
    • 1.概述
      • (1)概念
      • (2)优缺点
    • 2.结构
    • 3.分类
    • 4.语法
    • 5.性能分析
    • 6.使用规则
    • 7.设计原则
  • 四、SQL优化
    • 1.插入数据
    • 2.主键优化


前言

记录MySQL中事务、存储引擎、索引、视图等概念以及用法。


一、事务

1.概念

事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败
默认MySQL的事务是自动提交的。

2.操作

(1)开启事务

START TRABNSACTIONBEGIN;

(2)提交事务

COMMIT;

(3)回滚事务

ROLLBACK;

3.四大特性ACID

(1)原子性(Atomicity)

事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

(2)一致性(Consistency)

事务完成时,必须使所有的数据都保持一致状态。

(3)隔离性(Isolation)

数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

(4)持久性(Durability)

事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

4.并发事务问题

(1)脏读

一个事务读到另一个事务还没有提交的数据。

(2)不可重复读

一个事务先后读取同一条记录,但两次读取的数据不同,称之为不可重复读。

(3)幻读

一个事务按照条件查询数据时,没有对应得数据行,但是在插入数据时,又发现这行数据已经存在,好像出现了“幻读”。

5.隔离级别

(1)事务隔离级别

隔离级别脏读不可重复读幻读
Read uncommitted(读未提交)
Read committed(读已提交)×
Repeatable Read(可重复读)××
Serializable(序列化)×××

Repeatable Read 是MySQL得默认隔离级别。

(2)查看事务隔离级别

select @@global.tx_isolation; //查看系统隔离级别
select @@tx_isolation; //查看会话隔离级别(5.0以上版本)
select @@transaction_isolation; //查看会话隔离级别(8.0以上版本)

(3)设置事务隔离级别

set session transaction isolation level repeatable read; //设置会话隔离级别为而重复读
set session transaction isolation level read uncommitted; //设置会话隔离级别为读未提交
set session transaction isolation level read committed; //设置会话隔离级别为读已提交

(4)隔离级别演示

隔离级别为Read uncommitted,出现的脏读问题示例。
在这里插入图片描述
隔离级别为Read committed,出现的不可重复读问题示例。
在这里插入图片描述

隔离级别为Repeatable Read,出现的幻读问题示例。

在这里插入图片描述
注意:事务隔离级别越高,数据越安全,但是性能越低。

二、存储引擎

1.MySQL体系结构

(1)连接层:最上层是一些客户端和链接服务,主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
(2)服务层:第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能在这一层实现,如过程、函数等。
(3)引擎层:存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,选取合适的存储引擎。
(4)存储层:主要是将数据存储在文件系统之上,并完成与存储引擎的交互。

2.简介

(1)在创建表时,指定存储引擎。

CREATE TABLE 表名(字段1 字段1类型 [COMMENT 字段1注释],......字段n 字段n类型 [COMMENT 字段n注释]
)ENGINE = INNODB [COMMENT 表注释]

(2)查看当前数据库支持的存储引擎。

SHOW ENGINES;

3.InnoDB

(1)概念
InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在MySQL5.5之后,InnoDB是默认的MySQL存储引擎。
(2)特点
a.DML操作遵循ACID模型,支持事务;
b.行级锁,提高并发访问性能;
c.支持外键FOREIGN KEY约束,保证数据的完整性和正确性。
(3)文件
xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、数据和索引。
参数:innodb_file_per_table
(4)逻辑存储结构
在这里插入图片描述

4.MyISAM和Memory

MyISAM
(1)介绍
MyISAM是MySQL早期的默认存储引擎。
(2)特点
a.不支持事务,不支持外键;
b.支持表锁,不支持行锁;
c.访问速度快。
(3)文件
xxx.sdi:存储结构信息;
xxx.MYD:存储数据;
xxx.MYI:存储索引。
Memory
(1)介绍
Memory引擎的表数据存储在内存中,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。
(2)特点
a.内存存放;
b.hash索引(默认)。
(3)文件
xxx.sdi:存储表结构信息。

5.区别

特点InnoDBMyISAMMemory
存储限制64TB
事务安全支持--
锁机制行锁表锁表锁
B+tree索引支持支持支持
hash索引---
全文索引支持(5.6版本之后)支持-
空间使用N/A
内存使用中等
批量插入速度
支持外键支持--

6.选择

(1)InnoDB:是Mysql的默认存储引擎。支持事务、外键。(适合要求数据完整性、一致性、增删改查操作)
(2)MyISAM:适合以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高。
(3)MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。(对表的大小有限制,表过大无法缓存在内存中,且无法保障安全性。)

三、索引

1.概述

(1)概念

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

(2)优缺点

优势劣势
提高数据检索的效率,降低数据库的IO成本索引列也是要占用空间的
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗索引大大提高了查询效率,同时也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时i,效率降低。

2.结构

MySQL的索引是在存储引擎层实现的,不同存储引擎有不同的结构,主要包含以下几种:

索引结构描述
B+Tree索引最常见的索引类型,大部分引擎都支持B+树索引
Hash索引底层数据结构是哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询
R-Tree(空间索引)空间索引MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-Text(全文索引)是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES

不同的引擎对索引的支持情况:

索引InnoDBMyISAMMemory
B+Tree索引支持支持支持
Hash索引不支持不支持支持
R-Tree索引不支持支持不支持
Full-Text索引5.6版本之后支持支持不支持

B-tree

B+tree
相对于B-Tree区别:
a.所有的数据都会出现在叶子节点;
b.叶子节点形成一个单向链表。

MySQL中的B+tree
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能。

Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
hash索引特点:
1.hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,…)
2.无法利用索引完成排序操作
3.查询效率高,通常只需要一次检索就可以了,效率通常要高于B+tree索引

3.分类

分类含义特点关键字
主键索引针对于表中主键创建的索引默认自动创建,只能有一个PRIMARY
唯一索引避免同一个表中某数据列中的值重复可以有多个UNIQUE
常规索引快速定位特定数据可以有多个
全文索引全文索引查找的是文本中的关键词,而不是比较索引中的值可以有多个FULLTEXT

在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类含义特点
聚焦索引(Clustered Index)将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据必须有,而且只有一个
二级索引(Secondary Index将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键可以存在多个

聚集索引选取规则:
如果存在主键,主键索引就是聚集索引。
如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

4.语法

(1)创建索引

CREATE [UNIQUE|FULLTEXT] INDEX index_name ON table_name (index_col_name,...);

(2)查看索引

SHOW INDEX FROM table_name;

(3)删除索引

DROP INDEX index_name ON table_name;

5.性能分析

(1)查看执行频次

show [session|global] status

(2)慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认0秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2

(3)show profiles

(4)explain
EXPLAIN执行计划各字段含义:
Id:select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)
select_type:表示SELECT的类型,常见的取值有SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等。
type:表示连接类型,性能由好到差的连接类型为NULL、system、const、eq_ref、ref、range、index、all。
possible_key:显示可能应用在这张表上的索引,一个或多个。
Key:实际使用的索引。如果为NULL,则没有使用索引。
Key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确度的前提下,长度越短越好。
rows:MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的。
filtered:表示返回结果的行数占需读取行数的百分比,filtered的值越大越好。

6.使用规则

(1)索引列运算
不要在索引列上进行运算操作,索引将失效。
(2)模糊查询
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
(3)or连接的条件
用or分割开的条件,如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
(4)数据分布影响
如果MySQL评估使用索引比全表更慢,则不使用索引。
(5)SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
use index:建议使用哪个索引。
ignore index:忽略使用哪个索引。
force index:强制使用哪个索引。
(6)覆盖索引
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select *。
(7)前缀索引
当字段类型为字符串(varchar,text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:

create index idx_xxxx on table_name(column(n));

前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
(8)单列索引与联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

7.设计原则

(1)针对于数据量大,且查询比较频繁的表建立索引。
(2)针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
(3)尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
(4)如果是字符串类型的字段,字段的长度越长,可以针对于字段的特点,建立前缀索引。
(5)尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
(6)要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
(7)如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。

四、SQL优化

1.插入数据

(1)insert优化

· 批量插入
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。
· 手动提交事务
· 主键顺序插入
· List item

2.主键优化

(1)数据组织方式
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
(2)页分裂
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行益出),根据主键排列。
(3)页合并
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。
(4)主键设计原则
· 满足业务需求的情况下,尽量降低主键的长度。
· 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
· 尽量不要使用UUID做主键或者其他自然主键,如身份证号。

(5)order by优化
using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。
using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。

**·**根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
**·**尽量使用覆盖索引。
**·**多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
**·**如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。

(6)group by优化
**·**在分组操作时,可以通过 索引来提高效率。
**·**分组操作时,索引的使用也是满足最左前缀法则的。

(7)limit优化
优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

(8)count优化
· MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count()的时候会直接返回这个数,效率很高;
· InnoDB引擎就麻烦了,它执行count(
)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
优化思路:自己计数。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122574.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】STL容器适配器入门:【堆】【栈】【队列】(16)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.容器适配器的概念二.为什么stack和q…

php使用lunar实现农历、阳历、节日等功能

lunar是一个支持阳历、阴历、佛历和道历的日历工具库&#xff0c;它开源免费&#xff0c;有多种开发语言的版本&#xff0c;不依赖第三方&#xff0c;支持阳历、阴历、佛历、道历、儒略日的相互转换&#xff0c;还支持星座、干支、生肖等。仅供参考&#xff0c;切勿迷信。 官…

linux下alias别名设置说明

1&#xff1a;alias别名设置说明 我们想将某个可执行程序&#xff0c;命名为其它名称&#xff1b;比如为python指定对应的python版本 给python39指定python版本 alias python3/home/du/Downloads/Python-3.9.9/pythonduubuntu:/root$ python39 -V Python 3.9.92&#xff1a;…

4.5 final修饰符

在Java中&#xff0c;final修饰符可以修饰类、属性和方法&#xff0c;final有“最终”、“不可更改”的含义&#xff0c;所以在使用final关键字时需要注意以下几点&#xff1a; 使用final修饰类&#xff0c;则该类就为最终类&#xff0c;最终类不能被继承。 使用final修饰方法…

C++ list 模拟实现

目录 1. 基本结构的实现 2. list() 3. void push_back(const T& val) 4. 非 const 迭代器 4.1 基本结构 4.2 构造函数 4.3 T& operator*() 4.4 __list_iterator& operator() 4.5 bool operator!(const __list_iterator& it) 4.6 T* operator->…

XHSELL连接虚拟机的常见问题(持续更新)

问题一&#xff1a;找不到匹配的host key算法。 检查XSHELL的版本&#xff0c;如果是旧版本&#xff0c;就有可能不支持新的算法&#xff0c;解决方法就是安装最新版本的XSHELL。 注&#xff1a;本人使用xshell5连接ubuntu22.04.3&#xff0c;出现了上述问题&#xff0c;将xsh…

数据结构和算法(15):排序

快速排序 分治 快速排序与归并排序的分治之间的不同&#xff1a; 归并排序的计算量主要消耗于有序子向量的归并操作&#xff0c;而子向量的划分却几乎不费时间&#xff1b; 快速排序恰好相反&#xff0c;它可以在O(1)时间内&#xff0c;由子问题的解直接得到原问题的解&#…

万字解析设计模式之工厂方法模式与简单工厂模式

一、概述 1.1简介 在java中&#xff0c;万物皆对象&#xff0c;这些对象都需要创建&#xff0c;如果创建的时候直接new该对象&#xff0c;就会对该对象耦合严重&#xff0c;假如我们要更换对象&#xff0c;所有new对象的地方都需要修改一遍&#xff0c;这显然违背了软件设计的…

至高直降3000元,微星笔记本双11爆款推荐、好评有礼拿到手软

今年双11来的更早一些&#xff0c;微星笔记本先行的第一波雷影17促销活动&#xff0c;就已经领略到玩家们满满的热情。开门红高潮一触即发&#xff0c;微星笔记本双11活动周期至高直降3000元&#xff0c;众多爆款好货已经开启预约预售&#xff1a;有硬核玩家偏爱的性能双雄&…

接口返回响应,统一封装(ResponseBodyAdvice + Result)(SpringBoot)

需求 接口的返回响应&#xff0c;封装成统一的数据格式&#xff0c;再返回给前端。 依赖 对于SpringBoot项目&#xff0c;接口层基于 SpringWeb&#xff0c;也就是 SpringMVC。 <dependency><groupId>org.springframework.boot</groupId><artifactId&g…

逻辑运算的短路特性(,||)

文章目录 ||运算表达式A || 表达式B代码示例 &&运算表达式A && 表达式B代码样例 总结 ||运算 表达式A || 表达式B 表达式成真条件&#xff1a; 满足表达式A和表达式B任意一个为真 短路原则&#xff1a; 如果表达式A为真&#xff0c;就不执行和判断表达式B&a…

Web APIs——事件流

一、事件流 1.1 事件流与两个阶段说明 事件流指的是事件完整执行过程中的流动路径 说明&#xff1a;假设页面里有个div&#xff0c;当触发事件时&#xff0c;会经历两个阶段&#xff0c;分别是捕获阶段、冒泡阶段 简单来说&#xff1a;捕获阶段是 从父到子 冒泡阶段是从子到父…

震惊! 全方位解释在测试眼里,什么是需求?为什么要有需求?深入理解需求——图文并茂,生活举例,简单好理解

1、什么是需求&#xff1f; 需求定义(官方) 满足用户期望或正式规定文档&#xff08;合同、标准、规范&#xff09;所具有的条件和权能&#xff0c;包含用户需求和软件需求 用户需求&#xff1a;可以简单理解为甲方提出的需求&#xff0c;如果没有甲方&#xff0c;那么就是终端…

Hive数据查询详解

本专栏案例数据集链接: https://download.csdn.net/download/shangjg03/88478038 1.数据准备 为了演示查询操作,这里需要预先创建三张表,并加载测试数据。 1.1 员工表 -- 建表语句CREATE TABLE emp(empno INT, -- 员工表编号ename STRING, -- 员工姓名

分布式操作系统的必要性及重要性

总有人在各个平台留言或者私信问LAXCUS分布式操作系统的各种问题&#xff0c;尤其是关于分布式操作系统的应用市场、价值、意义之类的问题。我们团队做LAXCUS分布式操作系统&#xff0c;也不是头脑凭空发热&#xff0c;是基于我们之前的大量产品设计、经验逐渐一步步做起来。当…

查询计算机GUID码

如何查询计算机GUID码&#xff08;全局唯一标识符&#xff09; 1.快键键WINR进入注册表 2.找到\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography路径 3.双击MachineGuid项即可显示计算机GUID码

【网络】序列化反序列化

序列化反序列化 一、序列化反序列化1、概念2、序列化作用3、序列化框架的选择 二、Json1、介绍2、简单使用 一、序列化反序列化 1、概念 在前文《网络编程套接字》中&#xff0c;我们实现了服务器与客户端之间的字符串通信&#xff0c;这是非常简单的通信&#xff0c;在实际使…

Ant Design Vue UI框架的基础使用,及通用后台管理模板的小demo【简单】

一、创建 VUE 项目 npm create vuelatest二、安装使用 ant-design-vue 安装脚手架工具 $ npm install -g vue/cli # OR $ yarn global add vue/cli使用组件 # 安装 $ npm i --save ant-design-vue4.x全局完整注册 import { createApp } from vue; import Antd from ant-de…

Nokogiri库和OpenURI库使用HTTP做一个爬虫

Nokogiri和OpenURI是两个常用的Ruby库&#xff0c;用于编写爬虫程序。它们的主要功能如下&#xff1a; 1、Nokogiri&#xff1a;Nokogiri是一个强大的HTML和XML解析库&#xff0c;可以用于解析网页内容。它提供了一组简单易用的API&#xff0c;可以方便地遍历和操作HTML或XML文…

MySQL篇---第五篇

系列文章目录 文章目录 系列文章目录一、分库分表之后,id 主键如何处理?二、 说说在 MySQL 中一条查询 SQL 是如何执行的?三、索引有什么优缺点?一、分库分表之后,id 主键如何处理? 因为要是分成多个表之后,每个表都是从 1 开始累加,这样是不对的,我们需要一个全局唯一…