检索增强生成(RAG)是生成式 AI (GenAI)中的一类应用,支持使用自己的数据来增强 LLM 模型(如 ChatGPT)的知识。
RAG 通常会用到三种不同的AI模型,即 Embedding 模型、Rerankear模型以及大语言模型。本文将介绍如何根据您的数据类型以及语言或特定领域(如法律)选择合适的 Embedding 模型。
1
文本数据:MTEB 排行榜
HuggingFace** 的MTEB leaderboard是一个一站式的文本 Embedding 模型榜!您可以了解每个模型的平均性能。
您可以将“Retrieval Average”列进行降序排序**,因为这最符合向量搜索的任务。然后,寻找排名最高、占内存最小的模型。
- Embedding 向量维度是向量的长度,即 f(x)=y 中的 y,模型将输出此结果。
- 最大 Token 数是输入文本块的长度,即 f(x)=y 中的 x ,您可以输入到模型中。
除了通过 Retrieval 任务排序外,您还可以根据以下条件进行过滤:
语言:支持法语、英语、中文、波兰语。(例如:task=retrieval,
Language=chinese)
法律领域文本。
(例如:task=retrieval,Language=law)
值得注意的是,由于部分训练数据最近才得以公开,一些 MTEB 上的 Embedding 模型可能是看似合适但实际不合适的模型,排名虚高,实际表现可能会有所不同。因此,HuggingFace 发布了一篇博客,介绍了判断模型排名是否可信的要点。点击模型链接(称为“模型卡片”)后:
- 寻找解释模型如何训练和评估的博客和论文。仔细查看模型训练使用的语言、数据和任务。同时,寻找由知名公司创建的模型。例如,在 voyage-lite-02-instruct 模型卡片上,您会看到其他的 VoyageAI 模型列出,但不包括这个。这是一个提示!该模型是一 个overfitting 模型,不应使用!
- 在下面的截图中,我会尝试来自 Snowflake 的新模型“snowflake-arctic-embed-1”,因为它排名较高,体积小到足以在我的笔记本电脑上运行,并且模型卡片上有博客和论文的链接。
使用 HuggingFace 的好处就是,在选择完 Embedding 模型后,如果您需要更换模型,只需要在代码中修改 model_name 即可!
import torchfrom sentence_transformers import SentenceTransformer # Initialize torch settingstorch.backends.cudnn.deterministic = TrueDEVICE = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu') # Load the model from huggingface.model_name = "WhereIsAI/UAE-Large-V1" # Just change model_name to use a different model!encoder = SentenceTransformer(model_name, device=DEVICE) # Get the model parameters and save for later.EMBEDDING_DIM = encoder.get_sentence_embedding_dimension()MAX_SEQ_LENGTH_IN_TOKENS = encoder.get_max_seq_length() # Print model parameters.print(f"model_name: {model_name}")print(f"EMBEDDING_DIM: {EMBEDDING_DIM}")print(f"MAX_SEQ_LENGTH: {MAX_SEQ_LENGTH_IN_TOKENS}")2
图像数据:ResNet50
有时候您可能想要搜索与输入图像相似的图片。比如,您可能在寻找更多苏格兰折耳猫的图片。在这种情况下,您可以上传一张苏格兰折耳猫的图片,并要求搜索引擎找到类似的图片。
ResNet50是一种流行的 CNN 模型,最初由微软在 2015 年使用 ImageNet** 数据训练。
同样,对于视频搜索,ResNet50 仍然可以将视频转换为 Embedding 向量。然后,对静态视频帧进行相似性搜索,返回给用户最相似的视频作为最匹配结果。
3
音频数据:PANNs
类似于以图搜图,您也可以基于输入的音频片段搜索相似音频。
PANNs(预训练音频神经网络)是常用的音频搜索 Embedding 模型,因为 PANNs 基于大规模音频数据集预训练,并且擅长音频分类和标记等任务。
4
多模态图像与文本数据:
SigLIP 或 Unum
近几年,涌现了一批针对多种非结构化数据(文本、图像、音频或视频)混合训练的 Embedding 模型。这些模型能够在同一向量空间内同时捕获多种类型的非结构化数据的语义。
多模态 Embedding 模型支持使用文本搜索图像、为图像生成文本描述或以图搜图。
OpenAI** 在 2021 年推出的CLIP是标准的 Embedding 模型。但由于其需要用户自行进行微调,难以使用,所以到了 2024 年,谷歌推出了的SigLIP(Sigmoidal-CLIP)。该模型在使用 zero-shot prompt时取得了不错的表现。
小型 LLM 模型如今变得越来越流行。因为这些模型不需要大型云计算集群,可以在笔记本电脑上运行。小模型占用的内存较少,延时更低,运行速度比大型模型更快。Unum提供了多模态小型 Embedding 模型。
5
多模态文本、音频、视频数据
多模态文本-音频 RAG 系统大多使用多模态生成型 LLM。这类应用首先将声音转换为文本,生成声音-文本对,然后将文本转换为 Embedding 向量。之后您可以像往常一样使用 RAG 来检索文本。在最后一步,文本被映射回音频。
OpenAI 的Whisper可以将语音转录为文本。此外,OpenAI 的Text-to-speech (TTS)** 模型也可以将文本转换成音频。
多模态文本-视频的 RAG 系统使用类似的方法首先将视频映射到文本,转换为 Embedding 向量,搜索文本,并返回视频作为搜索结果。
OpenAI 的Sora可以将文本转换成视频。与 Dall-e 类似,您提供文本提示,而 LLM 生成视频。Sora 还可以通过静态图像或其他视频生成视频。
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇
一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书
2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:
- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:
- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!
1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:
2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:
3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:
![]()
三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!
路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
L5阶段:专题集丨特训篇 【录播课】
![]()
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇
2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!