本文详细介绍了腾讯混元大模型的本地部署过程,包括通过Ollama安装GGUF量化版本、配置参数、创建自定义模型并运行。随后展示了如何将混元模型连接到Elasticsearch,包括配置OpenAI兼容服务、创建Connector、上传文档并在Playground中进行测试。整个过程提供了完整的命令和参数配置,帮助读者在本地环境成功运行腾讯混元大模型并实现与Elasticsearch的集成应用。
腾讯混元大模型由腾讯公司全链路自研,在高质量的内容创作、数理逻辑、代码生成、多轮对话、图像与视频生产上性能表现优越,处于业界领先水平。我一直想在我自己的电脑上安装并试用。在本文中,我将详细描述安装过程并连接到 Elasticsearch。
注意:一下展示使用最新的 Elastic Stack 9.2.0。其界面可能和之前的有的版本有所不同。
安装混元大模型
我希望使用 Ollama 来进行安装。很可惜,目前混元大模型还不支持 Ollama[1] 按照。我在国内的网站上搜索了一下,很少有详细介绍如何安装的。腾讯混元-4B(及更小的变体)可以与 Ollama 一起使用,但目前还不能直接开箱即用。你需要使用与 llama.cpp 兼容的 GGUF 量化版本,然后将其包装为自定义 Ollama 模型。
Ollama 使用 llama.cpp 引擎,它支持 GGUF 格式的模型 —— 包括经过转换或已下载为 GGUF 格式的 Hunyuan-4B。
Hugging Face 上已经有一个可直接使用的量化版本:mradermacher/Hunyuan-4B-Instruct-GGUF[2]
详细安装步骤:
步骤 1:安装 Ollama
从 Download Ollama on macOS[3] 下载适用于 macOS、Windows 或 Linux 的 Ollama。
按照安装程序的指引完成安装,安装完成后,在终端运行以下命令进行验证:
ollama --version$ ollama --version ollama version is 0.12.9步骤 2:下载GGUF model
从这些版本中选择一个(例如 Q4_K_M,以平衡质量和速度):
mkdir -p ~/.ollama/models/hunyuan-4b cd ~/.ollama/models/hunyuan-4b curl -L -O https://huggingface.co/mradermacher/Hunyuan-4B-Instruct-GGUF/resolve/main/Hunyuan-4B-Instruct.Q4_K_M.gguf$ ls .ollama/models/ blobs manifests $ mkdir -p ~/.ollama/models/hunyuan-4b $ ls ~/.ollama/models blobs hunyuan-4b manifests $ cd ~/.ollama/models/hunyuan-4b $ curl -L -O https://huggingface.co/mradermacher/Hunyuan-4B-Instruct-GGUF/resolve/main/Hunyuan-4B-Instruct.Q4_K_M.gguf % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1353 100 1353 0 0 966 0 0:00:01 0:00:01 --:--:-- 966 100 2486M 100 2486M 0 0 5854k 0 0:07:14 0:07:14 --:--:-- 4677k步骤 3 – 创建自定义 Modelfile
在 ~/.ollama/models/hunyuan-4b/Modelfile 中创建以下内容:
FROM ./Hunyuan-4B-Instruct.Q4_K_M.gguf PARAMETER temperature 0.7 PARAMETER top_p 0.9 PARAMETER num_ctx 4096 TEMPLATE """{{ .System }} User: {{ .Prompt }} Assistant:""" SYSTEM "You are Hunyuan, a helpful Chinese assistant developed by Tencent."$ vi ~/.ollama/models/hunyuan-4b/Modelfile步骤 4 – 在 Ollama 中注册模型
ollama create hunyuan-4b -f ~/.ollama/models/hunyuan-4b/Modelfile$ ollama create hunyuan-4b -f ~/.ollama/models/hunyuan-4b/Modelfile gathering model components ⠸ gathering model components copying file sha256:def49bb81ddbecf7c2e3aa557716b915607c6fd3af7e73316c16464321d5da22 100% parsing GGUF using existing layer sha256:def49bb81ddbecf7c2e3aa557716b915607c6fd3af7e73316c16464321d5da22 creating new layer sha256:8e48700b8cb5619c3a31e83a13a321070a62ee259d91e1b81b1d2b9eda4a459f creating new layer sha256:7127d492f5e2ee2a8d4fbfd439094e35f3c13ebc9f07f6e9c9fd64f9cc243f16 creating new layer sha256:dedcbf3159e051675ba89642680de2bbfcac020a3f2c1afde851e27629484659 writing manifest success步骤 5 – 运行模型
ollama run hunyuan-4b$ ollama run hunyuan-4b >>> what is Elastic? 1. **Definition:** Elastic refers to the ability of an object or system to change shape or size in response to external forces without permanent deformation. In simpler terms, it means "bending" or "stretching". 2. **Types of Elasticity:** * **Elastic (or Young's Modulus):** The property where an object returns to its original shape after the force is removed. * **Yield:** When an object deforms permanently even without a constant force applied, it is called yield. A material that exhibits both elastic and yield properties is called "durable". 3. **Applications of Elasticity in Physics:** * **Coding (Elastic Database):** Elastic is the name given to the database system by MongoDB. * **Engineering:** Elasticity is used in designing structures like bridges, buildings, etc., ensuring they can withstand external forces without permanent deformation. * **Biology:** Elastic tissues such as muscle and skin are involved in various functions in living organisms. 4. **Elasticity in Software Engineering:** The term "elastic" is often used to describe systems that have the ability to change their structure or behavior dynamically, adapting to changes in the environment or user input without a need for complex code modifications. 5. **Elasticity in Physics (Reinforced Elasticity):** A phenomenon where materials undergo multiple rounds of deformation before returning to their original shape (e.g., rubber bands). This is useful in applications like car tires, where repeated pressure and release causes small changes in the tire's shape, improving fuel efficiency. </think> <answer> Okay, let's break down what "Elastic" means. 1. **Core Definition:** In a broad sense, "elasticity" refers to the property of an object or material that can change its shape or size when subjected to stress (force) and return to its original shape after the stress is removed. * Think of stretching a rubber band: it gets longer (deforms), and if you let go, it snaps back to its original length. That's elastic deformation. 2. **Types in Physics:** * **Elastic Deformation:** The object returns to its original shape after the force is removed. Examples include a spring or a metal rod. * **Yield (or Ductile Deformation):** The object deforms permanently even without constant stress, and sometimes it will later return to some extent. A material that can undergo both elastic and yield deformation is called "ductile." * **Plastic Deformation:** Permanent shape changes that cannot be easily reversed by the removal of stress. 3. **Why Elasticity Matters (Applications):** * **Engineering & Architecture:** Designing buildings, bridges, and other structures allows for them to withstand external forces like wind, earthquakes, or traffic loads without collapsing permanently. * **Biology:** Muscles and skin are elastic tissues that allow movement and flexibility in living organisms. * **Physics & Chemistry (Elastic Bands):** Used in demonstrations of elasticity, as mentioned above. * **Materials Science:** Understanding how different materials respond to stress helps in selecting the right material for specific applications. 4. **"Elastic" in Software Development:** * While not a physical property like in physics or engineering, the term "elastic" is often used metaphorically in software development: * An **Elastic Database** (like MongoDB) is designed to scale up and down automatically when the number of users or data grows. It can handle increased load without requiring manual intervention from developers. * An **Elastic System** can adapt its behavior or structure dynamically in response to changes, making it more flexible and resilient than a rigid system. In summary, "elastic" describes something that can stretch (or compress) and return to its original state. This property is crucial for many physical systems and also leads to the concept of scalable and adaptable software architectures. </answer> >>> What is Elasticsearch? Okay, let's break down what "Elasticsearch" means. 1. **Elastic as a Metaphor:** The name comes from the Greek adjective "ellastos," meaning "to stretch." In the context of computing, it refers to the ability of software systems to scale and adapt dynamically without requiring manual intervention or complex code changes. 2. **Core Concept - Scalability & Elasticity:** * **Scalability (Up-Scaling):** The system can handle a significantly larger number of users or data volume without performance degradation or crashes. For example, when more people start using a web application, the database can automatically add more capacity. * **Elasticity (Auto-Sharding & Rebalancing):** When the load on an Elasticsearch node decreases, it can remove resources from that node and move them to other nodes with less load. Conversely, if a node becomes overloaded, it can be assigned new clients or data chunks. This automatic distribution of work keeps the system balanced and responsive. 3. **Analogy:** Think of your car's engine or brakes being "elastic." If you use more gas (stress), the engine heats up slightly. When you let off the gas and turn it off, the heat dissipates back to normal (returns to original state). Similarly, Elasticsearch manages its resources dynamically based on current load. 4. **Why Use Elasticsearch?** * **High Availability & Fault Tolerance:** It's designed for distributed systems, making it resilient even if some nodes or data shards fail. * **Real-time Search and Analytics:** It excels at quickly indexing large amounts of text (like website content) and retrieving relevant information in near real-time. * **Distributed Nature:** Data is sharded across many machines, allowing for massive storage and retrieval capabilities far beyond a single machine's limits. * **Suitable for Log Data & Large Datasets:** It's commonly used to store and analyze logs from applications, servers, or IoT devices. 5. **Common Use Cases:** * **Search Engines (like Solr):** Elasticsearch powers much of Google Search (as part of the search infrastructure). * **Log Management & Monitoring:** Storing and analyzing application logs for performance monitoring and troubleshooting. * **Data Indexing/Analysis:** As a backend database for applications that need to perform complex queries or aggregations on large datasets. * **Real-time Analytics Dashboards.** In essence, Elasticsearch is a distributed, fault-tolerant search engine designed for high scalability and elasticity in the context of data indexing, retrieval, and analysis. It's a fundamental technology for modern>curl http://localhost:11434/api/generate -d '{ "model": "hunyuan-4b", "stream": false, "prompt": "What is hybrid search in Elasticsearch?" }'连接到 Elasticsearch
接下来,我们可以参考文章 “Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用[4]” 来连接到 Elasticsearch。首先我们按照该文中描述的那样安装好自己的 Elasticsearch 及 Kibana,并安装好 E5 模型。
创建 Connector
我们按照如下的参数来进行配置:
- Connector name:hunyuan-4b
- 选择 OpenAI provider:other (OpenAI Compatible Service)
- URL:http://localhost:11434/v1/chat/completions[5]
- 调整到你的 ollama 的正确路径。如果你从容器内调用,请记住替换 host.docker.internal 或等效项
- 默认模型:hunyuan-4b
- API 密钥:编造一个,需要输入,但值无关紧要
我们点击上面的 Save & test 按钮:
从上面的测试中,我们可以看出来测试是成功的。
上传文档并在 Playground 中进行测试
我们接下来使用和 “Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用[6]” 文中一样的文档来进行测试。
You are an assistant for question-answering tasks using relevant text passages from the book Alice in wonderland很有意思,混元模型的反应速度比我想象的要快。至少比我上次使用 DeepSeek R1 要快很多。我们尝试使用中文来进行提问:
谁出现在茶会上?文章有哪些章节?如果你想使用代码来完成查询的话,那么请按照如下的步骤:
我们可以点击上面的拷贝图标,并做相应的修改 即可。具体的操作步骤,请详细参阅之前的文章 “Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用[7]”。
AI大模型从0到精通全套学习大礼包
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
01.从入门到精通的全套视频教程
包含提示词工程、RAG、Agent等技术点
02.AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线
03.学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的
04.大模型面试题目详解
05.这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓