大模型开发学习路径:从基础知识到工程实战的完整指南

文章提供大模型(LLM)从入门到实战的12个月完整学习路线,分为四个阶段:阶段1打牢Python、数学和深度学习基础;阶段2掌握Prompt工程、LangChain等核心框架;阶段3学习模型微调与部署技术;阶段4探索多模态与工程化应用。每个阶段明确学习重点、实践任务和推荐资源,帮助学习者循序渐进掌握大模型开发技能,最终独立构建和部署AI应用。


从 ChatGPT、DeepSeek,到 Qwen、GLM、Claude……
大模型(LLM)正成为 AI 世界的核心引擎。

无论你是算法、后端还是工程背景,掌握大模型开发都是未来技术人的必修课。
但面对碎片化的知识和复杂的框架,很多人都会问——

“我该从哪里开始?要学什么?先搞清楚原理还是直接上手项目?”

这篇文章将分享从入门到实战的完整路径


🧭 总体学习框架

学习路线分为 4 个阶段,从基础知识到工程实战, 每一阶段都能“看得见成长、做得出项目”。

阶段时间目标核心主题
🌱 阶段10–2个月打牢基础Python、数学、深度学习、Transformer
⚙️ 阶段23–5个月掌握主流框架Prompt工程、LangChain、RAG、Agent
🔧 阶段36–9个月项目与微调LoRA微调、部署、向量数据库
🧩 阶段49–12个月多模态与工程化CLIP、LLaVA、优化、云端部署

🌱 阶段1:打牢基础(0–2个月)

没有坚实的数学与框架基础,后续所有“魔法”都会变成黑箱。

🎯 学习重点

  • 数学三件套

    :线性代数(矩阵运算、求导)、概率统计(分布、似然函数)

  • Python数据与AI工具链

    :NumPy / Pandas / Matplotlib

  • 深度学习基础

    :神经网络、反向传播、梯度下降

  • Transformer核心机制

    :自注意力、多头注意力、位置编码

💡 实践任务

  • PyTorch复现一个简单的 Transformer
  • 训练一个MNIST 图像分类模型

📘推荐资源卡

  • 《深度学习》(Ian Goodfellow)
  • 吴恩达《Deep Learning Specialization》
  • The Illustrated Transformer

⚙️ 阶段2:掌握大模型核心与主流框架(3–5个月)

这一阶段,你要从“能用”走向“能理解、能整合”。

🎯 学习重点

1️⃣ 大模型原理
  • Transformer、GPT、BERT、MoE 架构解析
  • 预训练与微调的区别
  • 生成式 vs 判别式模型
2️⃣ Prompt 工程
  • Prompt 四要素:角色、目标、方案、输出格式
  • 技巧:Zero-shot、Few-shot、Chain-of-Thought(思维链)
  • 进阶:Prompt 自调优、结构化 Prompt、约束性 Prompt
3️⃣ LangChain 框架
  • Chains / Memory / Agents / Function Calling
  • 实战:问答系统、文档摘要、SQL生成
4️⃣ RAG 技术(Retrieval-Augmented Generation)
  • 核心流程:数据提取 → 向量化 → 检索 → 生成
  • 工具:Chroma、Milvus、FAISS
  • 应用:企业知识库问答、信息检索增强

📘推荐资源卡

  • LangChain 官方文档
  • OpenAI Cookbook
  • HuggingFace Transformers

🧪项目建议

  • 🔹 用 LangChain + Chroma 构建知识库问答系统
  • 🔹 设计一个多轮对话 Agent

🔧 阶段3:模型微调与工程化(6–9个月)

理论够多了,现在该“造”自己的模型。

🎯 学习重点

🔹 微调技术
  • 轻量化微调

    :LoRA、QLoRA、Prefix Tuning、P-Tuning

  • 数据准备与增强、超参数设置、评估与验证

  • 框架:HuggingFace、LLaMA-Factory、DeepSpeed

🔹 模型优化与部署
  • 分布式训练(数据并行、模型并行)
  • 混合精度训练(FP16 / FP32)
  • 模型压缩与蒸馏
🔹 工程化工具
  • Docker / Ollama / Dify
  • REST API 接口开发(FastAPI / Gradio)

📘推荐资源卡

  • HuggingFace 官方课程
  • DeepSpeed 文档
  • LLaMA Factory GitHub

🧪实战项目

  • 微调 Qwen2 / Llama3 模型(LoRA)
  • 构建并部署一个 AI 助手(基于 Dify)

🧩 阶段4:多模态与算法进阶(9–12个月)

让模型不仅“理解语言”,还“看得懂世界”。

🎯 学习重点

  • 多模态模型

    :CLIP、BLIP、LLaVA、Stable Diffusion

  • 跨模态任务

    :图文匹配、视觉问答、文生图

  • 强化学习与优化

    :RLHF、蒸馏、剪枝、量化

  • 云端部署与系统化

    :Docker + K8S + 云平台(AWS / 阿里云)

📘推荐资源卡

  • OpenAI 技术博客
  • 《Diffusion Models Explained》
  • LLaVA GitHub

🧪实战项目

  • 复现 BLIP 图生文
  • 构建多模态 AI 助手(Vision + Text)

🧱 执行与成长建议

  1. 以输出为导向

    :每学完一个模块,做一个小项目。

  2. 记录与复盘

    :将代码与心得同步到 GitHub / Notion。

  3. 学习闭环

    :阅读论文 → 复现代码 → 写总结 → 分享。

  4. 参与社区

    :LangChain 中文群、HuggingFace 论坛、知乎 AI 圈。

  5. 关注趋势

    :持续关注 DeepSeek、Qwen、智谱、Anthropic 的更新。


AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线


03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的


04.大模型面试题目详解

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!


如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1215395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模型量化完全指南:从原理到实战加速大模型推理

模型量化是将高位宽参数(如Float32)转换为低位宽(如INT8、INT4)的技术,旨在压缩模型、提升推理速度并降低内存占用。主要分为PTQ(后训练量化)和QAT(量化感知训练)两种方式,可通过均匀/非均匀量化和不同粒度实现。针对大模型,权重量化、激活值…

2026寒假集训第二周周记录

2026寒假集训第二周周记录截至周六晚一共独立做出题目5道CF,三道码题集题目。分别的算法标签是模拟(8); 做错的题(还没有补): CF:1.MIXING WATER没有判断出数据的单调性,所以没有二分,再者,二分的题也已经好久没做…

生命的二元张力:弗洛伊德生的本能与死的本能理论解析

生命的二元张力:弗洛伊德生的本能与死的本能理论解析 在经典精神分析理论体系中,西格蒙德弗洛伊德(Sigmund Freud)晚年提出的“生的本能”(Eros)与“死的本能”(Thanatos)二元理论&…

多模态融合技术全解析:从传统架构到GPT-4o的演进之路

文章系统介绍了多模态融合技术的演进历程,从早期融合、晚期融合到Transformer时代的深度交互,再到当前主流的连接器范式和前沿的原生融合技术。详细分析了不同融合方法的优缺点、适用场景及工程实现,包括模态对齐、幻觉等常见问题的解决方案&…

大模型训练三阶段全解析:预训练、微调与对齐(程序员必看,建议收藏)

大模型训练分为预训练、微调和对齐三阶段。预阶段使用TB级数据学习通用语言能力;微调阶段通过GB级高质量数据增强指令遵循能力;对齐阶段确保输出符合人类价值观,遵循3H原则。三者共同构成完整的大模型开发流程,从知识压缩到任务适…

【腾讯实习AI大模型岗位已Offer】大模型面试宝典:高频问题+答案解析,助你轻松通关,建议收藏!

本文分享了作者在大模型岗位的完整面试经历,涵盖一面至三面的面试过程和问题,包括Transformer结构、BERT与GPT区别、LoRA原理等大模型核心知识点,以及算法题和职业规划问题。作者拥有图神经网络背景,成功通过面试并分享了实战经验…

Transformer模型详解:从入门到掌握大模型必备基础知识

本文详细介绍了一个包含8个章节的Transformer模型讲义,从整体框架到具体实现,包括Encoder-Decoder结构、文字向量化、位置编码、多头注意力机制、残差连接与层归一化、前馈神经网络以及模型输出等核心内容。该讲义旨在帮助读者彻底掌握Transformer原理&a…

tauri2应用添加系统托盘Tray

官网文档:https://v2.tauri.app/learn/system-tray/ 有两种方式可以添加系统托盘,一种是在js中,一种是在rust中,官方都有使用案例,其中要注意: 要记得在配置文件中添加这个特性。 这里我记录一下在js中添…

大模型的数学工厂:揭秘GPU与TPU如何重塑AI计算架构

文章探讨了为什么大语言模型需要专门的硬件而非传统CPU。LLM本质上是数学工厂,执行大规模并行矩阵乘法运算。CPU因设计用于逻辑运算和分支决策而不适合处理这种计算密集型任务。GPU通过大规模并行核心和Tensor Core优化矩阵运算,而Google的TPU采用脉动阵…

大模型学习全攻略:35个核心问题解答+独家AGI-CSDN资料包_2026年AI大模型岗面试面经

本文是一份大模型学习指南,以问答形式整理了35个关键问题,涵盖主流开源模型体系、Transformer架构、预训练微调范式等核心技术。详细介绍了GPT、BERT等模型特点与区别,提供了不同场景下的模型选择建议,并针对过拟合、灾难性遗忘等…

智能避障扫地机器人

目录 智能避障扫地机器人的工作原理主流避障技术分类典型产品性能参数选购注意事项维护保养要点 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式! 智能避障扫地机器人的工作原理 智能避障扫地机器人通过多传感器融合技术实现环境感知与…

智能声光感应窗帘系统设计

目录智能声光感应窗帘系统概述核心功能模块技术实现要点应用场景与优势扩展功能源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!智能声光感应窗帘系统概述 智能声光感应窗帘系统结合声音识别与光照传感器技术,通过自动化控制…

智能家居环境监测与自动调控系统设计

目录智能家居环境监测与自动调控系统概述核心功能模块技术实现方案应用场景与优势挑战与解决方案源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!智能家居环境监测与自动调控系统概述 智能家居环境监测与自动调控系统通过传感器网络实时…

智能环境测试仪设计

目录智能环境测试仪的设计要点关键技术实现应用场景示例源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!智能环境测试仪的设计要点 硬件设计 采用高精度传感器模块(如温湿度传感器、PM2.5传感器、CO₂传感器等)&…

智能环境监测系统设计

目录 智能环境监测系统概述核心组成部分关键技术应用场景示例代码示例(数据上传)扩展功能 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式! 智能环境监测系统概述 智能环境监测系统是一种基于物联网(…

智能货车集装箱系统

目录智能货车集装箱系统的核心功能系统的主要技术组成数据分析与优化应用安全监控与风险预警行业应用价值体现源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!智能货车集装箱系统的核心功能 智能货车集装箱系统通过物联网、大数据和人工…

深入解析:AI重塑就业格局:机遇、挑战与政策应对

深入解析:AI重塑就业格局:机遇、挑战与政策应对pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas",…

timefd

timefd 到底是什么你可以把 timefd 理解成 “把定时器变成文件描述符(fd)的工具” —— Linux 系统把定时器功能包装成了一个和 “文件、网络套接字” 一样的 fd,你可以像操作文件一样操作定时器。为什么要用它?新手可能用过 alar…

《穷查理宝典查理芒格的智慧箴言录》-20万字 最完整版

自用备份,有人要也可以自取 链接:https://pan.quark.cn/s/55e9e8be82c0

贾子普世智慧公理(Kucius Axioms of Universal Wisdom)的深度研究与系统论述

智能扩张的伦理边界:贾子普世智慧公理及其对AI与文明的裁决摘要: 贾子普世智慧公理是一个旨在界定智慧本质、为技术进步划定伦理边界的文明级规范体系。它提出“思想主权、普世中道、本源探究、悟空跃迁”四大核心公理,强调智慧是品格与价值的…