毕设开源 深度学习人脸性别年龄识别系统(源码+论文)

文章目录

  • 0 前言
  • 1 项目运行效果
  • 1 项目课题介绍
  • 2 关键技术
    • 2.1 卷积神经网络
    • 2.2 卷积层
    • 2.3 池化层
    • 2.4 激活函数:
    • 2.5 全连接层
  • 3 使用tensorflow中keras模块实现卷积神经网络
    • 3.1 Keras介绍
      • Keras深度学习模型
      • Keras中重要的预定义对象
      • Keras的网络层构造
    • 3.2 数据集处理训练
      • 分为年龄、性别
      • 性别分为两类
      • 性别训练代码
      • 年龄分为七个年龄段
      • 年龄训练代码
    • 3.3 模型验证预测
      • 实现效果
  • 4 最后

0 前言

🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。并且很难找到完整的毕设参考学习资料。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目提供大家参考学习,今天要分享的是

🚩毕业设计 深度学习人脸性别年龄识别系统(源码+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分
工作量:3分
创新点:4分

🧿 项目分享:见文末!

1 项目运行效果

视频效果:

毕业设计 深度学习人脸性别年龄识别系统

1 项目课题介绍

年龄和性别作为人重要的生物特征, 可以应用于多种场景, 如基于年龄的人机交互系统、电子商务中个性营销、刑事案件侦察中的年龄过滤等。然而基于图像的年龄分类和性别检测在真实场景下受很多因素影响, 如后天的生活工作环境等, 并且人脸图像中的复杂光线环境、姿态、表情以及图片本身的质量等因素都会给识别造成困难。

学长这次设计的项目 基于深度学习卷积神经网络,利用Tensorflow和Keras等工具实现图像年龄和性别检测。


2 关键技术

2.1 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

2.2 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

2.3 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

2.4 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.5 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。


3 使用tensorflow中keras模块实现卷积神经网络

这里使用一个简单的demo作为原理讲解,实际工程要比demo复杂

classCNN(tf.keras.Model):def__init__(self):super().__init__()self.conv1=tf.keras.layers.Conv2D(filters=32,# 卷积层神经元(卷积核)数目kernel_size=[5,5],# 感受野大小padding='same',# padding策略(vaild 或 same)activation=tf.nn.relu# 激活函数)self.pool1=tf.keras.layers.MaxPool2D(pool_size=[2,2],strides=2)self.conv2=tf.keras.layers.Conv2D(filters=64,kernel_size=[5,5],padding='same',activation=tf.nn.relu)self.pool2=tf.keras.layers.MaxPool2D(pool_size=[2,2],strides=2)self.flatten=tf.keras.layers.Reshape(target_shape=(7*7*64,))self.dense1=tf.keras.layers.Dense(units=1024,activation=tf.nn.relu)self.dense2=tf.keras.layers.Dense(units=10)defcall(self,inputs):x=self.conv1(inputs)# [batch_size, 28, 28, 32]x=self.pool1(x)# [batch_size, 14, 14, 32]x=self.conv2(x)# [batch_size, 14, 14, 64]x=self.pool2(x)# [batch_size, 7, 7, 64]x=self.flatten(x)# [batch_size, 7 * 7 * 64]x=self.dense1(x)# [batch_size, 1024]x=self.dense2(x)# [batch_size, 10]output=tf.nn.softmax(x)returnoutput

3.1 Keras介绍

keras是一个专门用于深度学习的开发软件。它的编程语言采用的为现在最流行的python语言,集成封装了CNTK,Tensorflow或者Theano深度学习框架为计算机后台进行深度建模,具有易于学习,高效编程的功能,数据的运算处理支持GPU和CPU,真正实现了二者的无缝切换。正是keras有如此特殊功能,所以它的优点有如下几个方面:

Keras深度学习模型

Keras深度学习模型可以分为两种:一种是序列模型,一种是通用模型。它们的区别在于其拥有不同的网络拓扑结构。序列模型是通用模型的一个范例,通常情况下应用比较广。每层之间的连接方式都是线性的,且在相邻的两层之间可以添加任意可用元素构建神经网络。通用模型是为了适用于复杂模型而设计的,所以常用于复杂的神经网络中。在使用过程中应用接口模型的要素和结构通常需要用函数化来定义。其定义的大致过程:首先是输入层的定义,然后是其他各层及要素的定义,最后到输出层,并将这个定义过程作为一个模型,进行运行和调试。

Keras中重要的预定义对象

Keras预定义了很多对象目的就是构造其网络结构,正是有了这么多的预定义对象才让Keras使用起来非常方便易用。研究中用的最多要数正则化、激活函数及初始化对象了。

  • 正则化是在建模时防止过度拟合的最常用且效果最有效的手段之一。在神经网络中采用的手段有权重参数、偏置项以及激活函数,其分别对应的代码是kernel_regularizier、bias_regularizier以及activity_regularizier。

  • 激活函数在网络定义中的选取十分重要。为了方便Keras预定义了丰富的激活函数,以此是适应不同的网络结构。使用激活对象的方式有两种:一个是单独定义一个激活函数层,二是通利用前置层的激活选项定义激活函数。

  • 初始化对象是随机给定网络层激活函数kernel_initializer or bias_initializer的开始值。权重初始化值好与坏直接影响模型的训练时间的长短。

Keras的网络层构造

在Keras框架中,不同的网络层(Layer)定义了神经网络的具体结构。在实际网络构建中常见的用Core Layer、Convolution Layer、Pooling Layer、Emberdding Layer等。


3.2 数据集处理训练

该项目将采集的照片分为男女两个性别;‘0-9’, ‘10-19’, ‘20-29’, ‘30-39’, ‘40-49’, ‘50-59’, ‘60+’,七个年龄段;分别把性别和年龄段的图片分别提取出来,并保存到性别和年龄段两个文件夹下,构造如下图:

分为年龄、性别

性别分为两类

性别训练代码

# ----------------------------------------------------------------------------------------------------------------------# 导入一些第三方包# ----------------------------------------------------------------------------------------------------------------------importtensorflowastffromnetsimportnet EPOCHS=40BATCH_SIZE=32image_height=128image_width=128model_dir="./models/age.h5"train_dir="./data/age/train/"test_dir="./data/age/test/"defget_datasets():train_datagen=tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0/255.0)train_generator=train_datagen.flow_from_directory(train_dir,target_size=(image_height,image_width),color_mode="rgb",batch_size=BATCH_SIZE,shuffle=True,class_mode="categorical")test_datagen=tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0/255.0)test_generator=test_datagen.flow_from_directory(test_dir,target_size=(image_height,image_width),color_mode="rgb",batch_size=BATCH_SIZE,shuffle=True,class_mode="categorical")train_num=train_generator.samples test_num=test_generator.samplesreturntrain_generator,test_generator,train_num,test_num# ----------------------------------------------------------------------------------------------------------------------# 网络的初始化 --- net.CNN(num_classes=7)# model.compile --- 对神经网络训练参数是设置 --- tf.keras.losses.categorical_crossentropy --- 损失函数(交叉熵)# tf.keras.optimizers.Adam(learning_rate=0.001) --- 优化器的选择,以及学习率的设置# metrics=['accuracy'] --- List of metrics to be evaluated by the model during training and testing# return model --- 返回初始化之后的模型# ----------------------------------------------------------------------------------------------------------------------defget_model():model=net.CNN(num_classes=7)model.compile(loss=tf.keras.losses.categorical_crossentropy,optimizer=tf.keras.optimizers.Adam(lr=0.001),metrics=['accuracy'])returnmodelif__name__=='__main__':train_generator,test_generator,train_num,test_num=get_datasets()model=get_model()model.summary()tensorboard=tf.keras.callbacks.TensorBoard(log_dir='./log/age/')callback_list=[tensorboard]model.fit_generator(train_generator,epochs=EPOCHS,steps_per_epoch=train_num//BATCH_SIZE,validation_data=test_generator,validation_steps=test_num//BATCH_SIZE,callbacks=callback_list)model.save(model_dir)# ----------------------------------------------------------------------------------------------------------------------

年龄分为七个年龄段

年龄训练代码

# ----------------------------------------------------------------------------------------------------------------------# 导入一些第三方包# ----------------------------------------------------------------------------------------------------------------------importtensorflowastffromnetsimportnet EPOCHS=20BATCH_SIZE=32image_height=128image_width=128model_dir="./models/gender.h5"train_dir="./data/gender/train/"test_dir="./data/gender/test/"defget_datasets():train_datagen=tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0/255.0)train_generator=train_datagen.flow_from_directory(train_dir,target_size=(image_height,image_width),color_mode="rgb",batch_size=BATCH_SIZE,shuffle=True,class_mode="categorical")test_datagen=tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0/255.0)test_generator=test_datagen.flow_from_directory(test_dir,target_size=(image_height,image_width),color_mode="rgb",batch_size=BATCH_SIZE,shuffle=True,class_mode="categorical")train_num=train_generator.samples test_num=test_generator.samplesreturntrain_generator,test_generator,train_num,test_numdefget_model():model=net.CNN(num_classes=2)model.compile(loss=tf.keras.losses.categorical_crossentropy,optimizer=tf.keras.optimizers.Adam(lr=0.001),metrics=['accuracy'])returnmodelif__name__=='__main__':train_generator,test_generator,train_num,test_num=get_datasets()model=get_model()model.summary()tensorboard=tf.keras.callbacks.TensorBoard(log_dir='./log/gender/')callback_list=[tensorboard]model.fit_generator(train_generator,epochs=EPOCHS,steps_per_epoch=train_num//BATCH_SIZE,validation_data=test_generator,validation_steps=test_num//BATCH_SIZE,callbacks=callback_list)model.save(model_dir)# ----------------------------------------------------------------------------------------------------------------------

3.3 模型验证预测

实现效果


篇幅有限,更多详细设计见设计论文

4 最后

项目包含内容

完整详细设计论文

🧿 项目分享:见文末!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1214262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

毕设开源 深度学习智慧农业yolo苹果采摘护理定位辅助系统(源码+论文)

文章目录 0 前言1 项目运行效果2 课题背景2.1 农业智能化发展需求2.2 计算机视觉技术发展2.3 现有技术瓶颈2.4 本课题创新点2.5 应用价值预测 3 设计框架3.1. 系统概述3.2. 技术架构3.2.1 核心技术栈3.2.2 系统架构图 3.3. 系统组件详解3.3.1 模型推理组件3.3.1.1 YOLO模型特点…

勾股定理(毕达哥拉斯定理)

前言核心公式 对于直角三角形,两条直角边的平方和等于斜边的平方 利用图解法3个直角三角形和一个正方形 将4个直角三角形和正方形排列成一个ccc\times ccc的正方形,可知这个正方形的大小是(b−a)(b−a)(b-a)\times (b-a)&#…

Z-Image-Turbo文旅宣传案例:景区海报智能生成部署教程

Z-Image-Turbo文旅宣传案例:景区海报智能生成部署教程 1. 为什么文旅行业需要这张“秒出图”的海报生成工具? 你有没有遇到过这样的场景:五一假期前两天,景区运营团队突然接到通知——要为新开的非遗体验馆制作一组高清宣传海报…

麦橘超然企业应用案例:电商海报自动化生成系统部署实录

麦橘超然企业应用案例:电商海报自动化生成系统部署实录 1. 为什么电商团队需要这个“离线绘图台” 你有没有见过这样的场景:某天下午三点,运营同事冲进技术组,手里攥着刚改完的促销文案,急吼吼地说:“老板…

cv_resnet18_ocr-detection部署教程:3步实现图片文字自动提取

cv_resnet18_ocr-detection部署教程:3步实现图片文字自动提取 1. 为什么你需要这个OCR检测模型 你有没有遇到过这样的场景:手头有一堆商品宣传图、合同扫描件、会议白板照片,想快速把里面的关键文字提取出来,却要一张张手动敲&a…

unet image Face Fusion保姆级教程:从零开始部署WebUI界面

unet image Face Fusion保姆级教程:从零开始部署WebUI界面 你是不是也试过各种人脸融合工具,结果不是安装失败,就是界面卡顿,要么就是效果生硬、边缘发虚?今天这篇教程,不讲原理、不堆参数,就带…

小白必看!BSHM人像抠图镜像保姆级部署教程

小白必看!BSHM人像抠图镜像保姆级部署教程 你是不是也遇到过这些情况: 想给电商主图换背景,但PS抠图太费时间,边缘毛发总抠不干净;做短视频需要人物从原图中“跳出来”,可专业抠图工具又不会用、装不上&a…

YOLOv13训练全流程:自定义数据集轻松上手

YOLOv13训练全流程:自定义数据集轻松上手 YOLO系列模型从v1走到v13,早已不是简单的版本迭代,而是一场持续十年的视觉感知范式进化。当产线质检员在毫秒级响应中完成对0.3毫米焊点的判定,当无人机巡检系统在强光干扰下仍能稳定识别…

分享西安不锈钢水箱生产厂家满意度情况,看看哪家性价比高

一、基础认知篇 问题1:西安不锈钢水箱生产厂家的满意度主要受哪些因素影响? 西安不锈钢水箱生产厂家的用户满意度,核心取决于产品质量、定制能力、安装服务和售后响应四大维度。从西安本地市场反馈来看,用户在意的…

长沙代驾平台哪个口碑好,三玖驾到代驾口碑出众

在长沙的深夜酒局散场时,在商务应酬结束的停车场里,在长途自驾疲惫不堪的高速服务区中,选择一个靠谱的代驾平台,不仅关乎出行安全,更决定着服务体验与成本控制。面对市场上鱼龙混杂的代驾服务,如何避开黑代驾的隐…

【Django毕设全套源码+文档】基于Django的网上租车系统设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

鱼乐圈自助ktv有投影设备吗,靠谱选择看这里?

随着自助KTV行业的快速发展,消费者对门店的设备配置、交通条件和品牌实力愈发关注,长春市鱼小圈文化娱乐有限公司旗下的鱼乐圈自助KTV作为行业创新代表,近期也收到了不少用户的高频提问。本文将围绕鱼乐圈自助ktv有…

【Django毕设全套源码+文档】基于Django的计算机学院考勤管理系统设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

Paraformer-large如何扩展词汇?领域术语识别优化教程

Paraformer-large如何扩展词汇?领域术语识别优化教程 1. 为什么需要扩展Paraformer-large的词汇表? 你可能已经用过Paraformer-large语音识别镜像,上传一段会议录音或技术讲座音频,点击“开始转写”,几秒钟后就得到了…

【Django毕设全套源码+文档】基于python的美容院优质客户筛选系统的设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

【Django毕设全套源码+文档】基于Django的农业害虫识别系统设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

真实体验分享:我用Open-AutoGLM做了个自动点外卖脚本

真实体验分享:我用Open-AutoGLM做了个自动点外卖脚本 你有没有过这样的时刻——深夜加班饿得前胸贴后背,手指已经点开外卖App,却在“选店→翻菜单→加购→凑满减→填地址→支付”这12步流程里,突然丧失了所有力气? 我…

UNet人脸融合键盘操作技巧,Shift+Enter提速

UNet人脸融合键盘操作技巧,ShiftEnter提速 在日常使用UNet人脸融合WebUI进行内容创作、数字人制作或创意实验时,你是否曾反复点击“开始融合”按钮,却忽略了那个藏在角落、能真正提升效率的快捷键?它不 flashy,不炫目…

Qwen3-1.7B学术搜索增强:语义检索集成实战

Qwen3-1.7B学术搜索增强:语义检索集成实战 1. 为什么小模型也能做好学术搜索? 你可能已经习惯了用大模型查论文、读摘要、写综述——但动辄几十GB显存、需要多卡部署的“巨无霸”,真适合日常科研场景吗? 其实,很多学…

生成音频有杂音?CosyVoice2-0.5B音质优化四步法

生成音频有杂音?CosyVoice2-0.5B音质优化四步法 你刚用CosyVoice2-0.5B生成了一段语音,点开播放——咦?怎么有轻微的“嘶嘶”声、底噪、断续感,甚至偶尔夹杂着电子杂音?不是说“3秒极速复刻”“自然语言控制”吗&…