大模型训练三阶段完全指南:从预训练到对齐,一文掌握GPT/LLaMA等模型训练流程(建议收藏)

大模型训练分为预训练、微调和对齐三阶段。预训练阶段使用TB级数据学习通用语言能力;微调阶段通过GB级高质量数据增强特定任务能力;对齐阶段确保输出符合人类价值观,采用3H原则。这三个阶段从知识基础、任务适配到价值对齐,共同构建了大模型训练完整范式,为GPT、LLaMA等模型提供技术路线。


大模型(如GPT、LLaMA、Claude等)的训练通常分为三个阶段:预训练、微调和对齐。这是业内目前公认的大模型开发范式。读完本文后,你将了解大模型训练不同阶段的数据量、数据格式和训练目标。

  1. 预训练(Pretraining)

预训练的目标是让模型学习通用的语言表示能力(如语法、知识、推理)。为了达成这一目标,大模型需要有效地解决两个关键问题:一是如何利用大规模的无标签文本进行训练。二是如何构建复杂的语言建模。在前大模型时代,Bert等预训练模型已经表现出很好的语言建模能力。首先这些模型在大规模的无标注样本中进行预训练。

预训练通常的任务包括:

  • 自回归语言建模(如GPT):模型从左到右逐词预测,适合生成任务,但无法直接利用下文。
  • 掩码语言建模(如BERT):随机遮盖部分词(如"巴黎是[MASK]的首都"→预测"法国"),能利用双向上下文。
  • 去噪自编码(如BART/T5):对文本破坏(删除、打乱)后让模型恢复,兼具生成与理解能力。
  • 下一句预测(早期BERT用):判断两句子是否连续,后因效果有限逐渐弃用。

模型预训练好以后需要进行微调以适应各种下游任务。

随着算力与数据的爆发式增长,大模型时代(如GPT-3、ChatGPT、Gemini等)将预训练技术推向新高度。这些模型不仅继承了传统预训练任务(如自回归建模、掩码预测),还在参数规模上有了很大的飞跃,例如:从BERT的亿级参数(1.1亿)跃升至万亿级(GPT-3达1750亿),模型容量显著提升。大模型在预训练阶段已经拥有大部分的零样本推理能力。无需微调即可通过提示(Prompt)完成翻译、问答等任务(如ChatGPT的指令跟随)。

预训练的数据量规模通常需要 TB级 文本数据,来源包括书籍、网页、百科、代码(GitHub)、学术论文等。下表列举了一些常见大模型的预训练词元规模(token),一般都在万亿量级。预训练阶段的词元规模对预训练的效果很关键,在百川大模型2的技术报告指出,参数在7B的模型在1万亿词元预训练后,继续增加预训练的数据量,仍然有较大的提升。

模型预训练词元规模
GPT - 30.3万亿
Llama(70亿、130亿参数)1万亿
Llama(330亿、650亿参数)1.4万亿
Llama 22万亿
Llama 315万亿
Bloom0.34万亿
DeepSeek(70亿、670亿参数)2万亿
DeepSeekMoE(160亿参数)2万亿
DeepSeek - V2(2360亿参数)8.1万亿
  1. 监督微调(Supervised Fine-tuning)

监督微调的目标是增强预训练模型指令遵循能力并激活潜在的推理技能以适应特定任务(如问答、摘要、代码生成)。通过在有标注的任务数据上进行进一步训练,模型能够调整其参数以更好地匹配目标场景的需求。微调通常分为以下几种方式:

  • 全参数微调(Full Fine-tuning):更新模型的所有参数,适用于数据量较大的任务,但计算成本较高。
  • 轻量级微调(Lightweight Fine-tuning):仅调整部分参数(如LoRA、Adapter模块),在保持预训练知识的同时高效适配新任务。

微调后的模型能够更精准地理解任务指令,减少通用预训练带来的偏差,并且可以在特定领域(如医疗、法律、金融)中表现出更强的专业性和可靠性。

微调的数据量规模:比预训练小得多,通常 GB级(如Alpaca使用52K指令数据)。此阶段使用的数据质量要高于预训练阶段,往往需要大量的人工标注。

在微调大模型时,数据格式的选择直接影响模型性能。常见的格式包括:

1)结构化数据(如{“input”:“问题”,“output”:“答案”}),适用于单轮问答和文本生成;

2)指令微调数据(如{“instruction”:“翻译成法语”,“input”:“Hello”,“output”:“Bonjour”}),强调任务意图与输出的精准匹配;

3)对话数据(如[{“role”:“user”,“content”:“你好”},{“role”:“assistant”,“content”:“您好”}]),用于构建多轮对话系统;

合理设计这些格式,保持字段标准化,必要时添加任务类型等元数据,能显著提升模型在客服、等场景中的适应能力。

  1. 对齐(Alignment)

在微调大语言模型时,确保其输出符合人类价值观并减少有害内容是核心目标,这一目标也称为对齐,旨在大模型的回答对齐人类的偏好和期望。这一过程需要遵循3H原则(Helpful, Honest, Harmless),即要求模型输出应当具备帮助性(Helpful)、诚实性(Honest)和无害性(Harmless)。具体包括:

  • Helpful(帮助性)

通过指令微调数据(如{“instruction”:“如何健康饮食?”, “response”:“建议多吃蔬菜…”})训练模型提供实用、具体且符合用户需求的回答。 又例如在对话数据中(如[{“role”:“user”, “content”:“帮我规划学习计划”}, {“role”:“assistant”, “content”:“建议每天…”}]),强调回答的针对性和可操作性。

  • Honest(诚实性)

对事实性任务(如问答),采用结构化数据(如{“input”:“地球是平的?”, “output”:“错误,地球是近球体”}),确保输出基于可靠知识,避免编造信息。 通过训练识别并拒绝超出模型知识范围的问题(如回答“我不确定”而非猜测)。

  • Harmless(无害性)

在数据中显式标注有害内容(如{“text”:“仇恨言论示例”, “label”:“harmful”}),训练模型识别并拒绝暴力、歧视等负面输出。

对齐微调的数据量规模:通常 MB~GB级。如果是强化学习,数据可能仅数万条。数据来源包括人工标注(如OpenAI的RLHF)、AI反馈(如RLAIF)。数据格式一般有两种,通常以对比形式呈现,包含模型生成的不同回答及人类标注的偏好关系。RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)和DPO(Direct Preference Optimization,直接偏好优化)代表了当前最先进的基于人类偏好的语言模型优化方法。RLHF通过分离的奖励建模和强化学习提供了强大的对齐框架,而DPO则提供了更高效稳定的替代方案。

对齐的时候常常采取对偶式和排序式的数据以提供人类偏好的信号。

对偶式数据(Pairwise Data):

{ "prompt": "请解释量子力学的基本概念", "chosen": "量子力学是研究物质世界微观粒子运动规律的物理学分支,主要概念包括波粒二象性、量子叠加和量子纠缠...", "rejected": "量子力学就是关于量子的力学,比如原子和电子之类的" }

排序式数据(Ranked Data):

{ "prompt": "写一首关于春天的诗", "responses": [ {"text": "春天来了,花儿开了", "rank": 2}, {"text": "春风拂面百花开,燕子归来柳絮飞。青山绿水皆含笑,万物复苏春意回。", "rank": 1}, {"text": "春天", "rank": 3} ] }
  1. 总结

大模型的训练一般包括预训练,监督微调和对齐三个关键步骤。预训练将通用语言的知识压缩到模型参数中,为后续的监督微调打下基础。监督微调增强了大模型的指令遵循能力,可以看作对齐微调的参数初始化步骤。对齐主要解决的是人类偏好的问题,可以采取PPO等强化学习算法或者DPO这样的高效替代算法。

如何学习AI大模型?

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!


第一阶段:从大模型系统设计入手,讲解大模型的主要方法;

第二阶段:在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段:大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段:大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段:大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段:以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段:以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

大模型全套视频教程

200本大模型PDF书籍

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

大模型产品经理资源合集

大模型项目实战合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1211041.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智谱ZRead MCP vs DeepWiki MCP:大模型开发者必备的MCP工具全解析

本文深入对比了智谱ZRead MCP与DeepWiki MCP两款MCP服务器工具。ZRead MCP专注于GitHub仓库代码级访问,需智谱API Key,适合阅读源码、检索Issue;DeepWiki MCP专注于技术文档结构化解析与问答,提供深度技术解释,覆盖主流…

主持专业创业踩坑记?我的经验分享,靠自我提升从亏损到盈利

从专业主持人到独立创办工作室,我经历了八个月的摸索期,走过不少弯路,最终通过系统性的自我调整与提升,逐步构建了健康的运营模式。这段历程让我认识到,主持领域的创业,远不止于台上“会说话”的能力&#…

什么是 RAG?RAG 的主要流程是什么?

RAG(检索增强生成)详解 一、什么是 RAG? 1. 定义 RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索和大语言模型生成的技术,它让 AI 在回答问题时能够先从外部知识库…

什么是 Google ADK?

Google ADK 详解 一、什么是 Google ADK? 1. 定义 Google ADK(Agent Development Kit,智能体开发工具包) 是 Google 推出的用于构建 AI 智能体的开发框架和工具集。它提供了一套完整的工具、API 和最佳实践,帮助开发…

2026诚信电源线及电缆生产厂家推荐榜

2026诚信电源线及电缆生产厂家推荐榜行业背景与筛选维度据《2026-2030年中国电线电缆行业发展白皮书》数据显示,2026年国内电线电缆市场规模突破1.5万亿元,年复合增长率达5.2%。随着城市配电网改造、轨道交通建设等项…

day.1

可能出现的问题 1.java是大小写敏感的 2.尽量使用英文 3.文件名和类名必须保持一致,并且首字母大写

大数据 Cassandra 中的数据序列化与反序列化

大数据 Cassandra 中的数据序列化与反序列化:从快递包裹到分布式数据库的秘密 关键词:Cassandra、序列化、反序列化、数据持久化、分布式存储、二进制协议、SSTable 摘要:在分布式数据库 Cassandra 的世界里,数据就像一群需要跨城…

从传统AI到 Agentic AI:教育技术中,提示工程架构师的转型之路!

从传统AI到Agentic AI:教育技术中,提示工程架构师的转型之路 一、引言:当“机械导师”遇到“主动学习者” 你是否见过这样的场景? 一个学生用某款英语背单词APP,连续3天收到“abandon”的复习提醒——哪怕他早就把这…

Kotlin 移动开发中的设计模式:MVVM 架构实战

Kotlin 移动开发中的设计模式:MVVM 架构实战 关键词:Kotlin、移动开发、设计模式、MVVM 架构、实战 摘要:本文主要围绕 Kotlin 在移动开发中运用 MVVM 架构展开。我们会先介绍 MVVM 架构的背景知识,用简单易懂的方式解释核心概念及…

企业估值中的量子点显示技术应用评估

企业估值中的量子点显示技术应用评估 关键词:企业估值、量子点显示技术、应用评估、技术原理、市场价值 摘要:本文聚焦于企业估值中量子点显示技术的应用评估。首先介绍了研究的背景、目的、预期读者、文档结构和相关术语。接着阐述了量子点显示技术的核心概念、原理和架构,…

2026年宜宾专业家庭搬家公司推荐指南

2026年宜宾专业家庭搬家公司推荐指南一、宜宾居民搬家行业背景与推荐依据据《2026-2030年中国居民搬家服务行业发展白皮书》数据显示,2026年川南地区居民搬家需求同比增长21%,其中宜宾市因房地产市场活跃度提升,家庭…

论文开题“黑科技”大揭秘:书匠策AI如何让你的研究赢在起点?

对于许多学术新手来说,论文开题报告就像一座难以翻越的大山——选题撞车、文献堆砌、逻辑混乱、格式错乱……这些问题常常让人焦头烂额。别担心!今天我们要揭秘一款“科研神器”——书匠策AI,它用智能算法和海量学术数据,为你的开…

《AI Flow: Perspectives, Scenarios, and Approaches》论文解读

《AI Flow: Perspectives, Scenarios, and Approaches》论文深度解读 (论文链接:https://arxiv.org/html/2506.12479v1,发布于2025年6月14日,领域:cs.AI) 一、论文基本信息 1. 核心团队与背景 作者单位&…

论文开题不再愁!书匠策AI:你的学术“开题神器”

在学术研究的漫漫征途中,论文开题报告就像是一座灯塔,为我们指引着研究方向。它不仅是对研究项目的初步规划,更是向评审专家展示研究价值与可行性的重要窗口。然而,对于许多研究者,尤其是初涉学术领域的新手来说&#…

论文开题“神器”大揭秘:书匠策AI如何让你的研究赢在起点?

在学术研究的赛道上,开题报告就像运动员的起跑姿势——姿势对了,才能跑得又快又稳。但现实中,许多研究者(尤其是刚入门的新手)常常被这些问题困扰:选题太普通,缺乏创新性;文献综述像…

论文开题“黑科技”:书匠策AI如何让你的选题秒变“学术顶流”

对于许多学术小白来说,论文开题就像一场“噩梦”——选题太宽泛怕被导师说“假大空”,选题太冷门又怕找不到参考文献;文献综述写得像“流水账”,研究方法设计得漏洞百出……别慌!今天要介绍的这款“学术神器”——书匠…

论文开题不再愁!书匠策AI:你的学术“导航仪”

在学术的浩瀚海洋中,论文开题报告就像是一座灯塔,为后续的研究指引方向。然而,对于许多研究生和科研新手来说,撰写开题报告却像是一场“噩梦”——选题撞车、文献混乱、逻辑不清、格式错乱……这些问题如同汹涌的波涛,…

论文开题不再愁!揭秘书匠策AI的“科研魔法棒”

在学术研究的道路上,开题报告就像是一座灯塔,为后续的研究指引方向。然而,对于许多研究者,尤其是刚踏入学术领域的新手来说,撰写一份高质量的开题报告却是一项极具挑战性的任务。选题没思路、文献梳理混乱、研究方法设…

开题报告不再愁!书匠策AI:你的学术写作“智能导航仪”

在学术研究的漫漫征途中,开题报告宛如一座明亮的灯塔,为后续的研究指引方向。然而,对于许多研究者,尤其是初涉学术领域的新手来说,撰写一份高质量的开题报告却如同攀登一座陡峭的山峰,充满了挑战与迷茫。别…

导师严选10个AI论文软件,助你轻松搞定本科毕业论文!

导师严选10个AI论文软件,助你轻松搞定本科毕业论文! 论文写作的“隐形助手”,你真的了解吗? 在本科阶段,论文写作往往成为许多学生最头疼的环节。从选题到开题,再到撰写与降重,每一步都需要大量…