verl与vLLM集成实战:推理-训练无缝切换部署案例

verl与vLLM集成实战:推理-训练无缝切换部署案例

1. verl 介绍

verl 是一个灵活、高效且可用于生产环境的强化学习(RL)训练框架,专为大型语言模型(LLMs)的后训练设计。它由字节跳动火山引擎团队开源,是 HybridFlow 论文的开源实现。

这个框架的核心目标是解决 LLM 后训练中常见的效率瓶颈问题——尤其是在强化学习阶段,推理和训练需要频繁切换,传统流程往往存在通信开销大、资源利用率低、部署复杂等问题。verl 通过创新的 3D-HybridEngine 和 Hybrid 编程模型,实现了推理与训练之间的高效协同,特别适合在大规模集群上进行高吞吐的 RL 训练任务。

verl 具有以下特点,使其灵活且易于使用:

  • 易于扩展的多样化 RL 算法:Hybrid 编程模型结合了单控制器和多控制器范式的优点,能够灵活表示并高效执行复杂的后训练数据流。用户只需几行代码即可构建 RL 数据流。
  • 与现有 LLM 基础设施无缝集成的模块化 API:通过解耦计算和数据依赖,verl 能够与现有的 LLM 框架(如 PyTorch FSDP、Megatron-LM 和 vLLM)无缝集成。此外,用户可以轻松扩展到其他 LLM 训练和推理框架。
  • 灵活的设备映射和并行化:支持将模型灵活地映射到不同的 GPU 组上,以实现高效的资源利用,并在不同规模的集群上具有良好的扩展性。
  • 与流行的 HuggingFace 模型轻松集成:verl 能够方便地与 HuggingFace 模型进行集成,降低迁移成本。

同时,verl 在性能方面也表现出色:

  • 最先进的吞吐量:通过无缝集成现有的 SOTA LLM 推理框架(如 vLLM),verl 实现了高生成和训练吞吐量,显著缩短了每个训练周期的时间。
  • 基于 3D-HybridEngine 的高效 Actor 模型重分片:这一技术消除了内存冗余,并大幅减少了在推理和训练模式之间切换时的通信开销,使得整个 RL 流程更加流畅高效。

正是这些特性,让 verl 成为当前少数能真正实现“推理-训练”无缝切换的生产级 RL 框架之一。

2. Verl 安装与验证

在开始集成实践前,首先需要确保 verl 已正确安装并可正常调用。以下是详细的安装与验证步骤。

2.1 进入 Python 环境

建议使用虚拟环境来管理依赖,避免版本冲突。你可以使用condavenv创建独立环境:

conda create -n verl-env python=3.10 conda activate verl-env

或使用 venv:

python -m venv verl-env source verl-env/bin/activate # Linux/Mac # 或 verl-env\Scripts\activate # Windows

2.2 安装 verl

目前 verl 尚未发布到 PyPI,需从 GitHub 仓库源码安装。执行以下命令:

git clone https://github.com/volcengine/verl.git cd verl pip install -e .

安装过程中会自动安装依赖项,包括torch,transformers,accelerate,ray等常用库。若你计划与 vLLM 集成,请额外安装 vLLM:

pip install vllm

注意:vLLM 对 CUDA 版本和 PyTorch 版本有特定要求,建议使用 CUDA 11.8 或 12.1,PyTorch 2.0+,具体请参考 vLLM 官方文档。

2.3 验证安装

进入 Python 解释器,尝试导入 verl 并查看版本号:

import verl print(verl.__version__)

如果输出类似0.1.0或具体的提交版本号(如0.1.0+git.sha.abc123),说明安装成功。

此外,还可以运行一个简单的测试脚本来确认核心组件是否可用:

from verl.utils import get_ranks_in_group print("Verl imported successfully!")

无报错即表示基础环境已准备就绪。

3. vLLM 与 verl 集成原理

要理解 verl 如何实现“推理-训练无缝切换”,关键在于其对 vLLM 的深度集成机制。

3.1 为什么选择 vLLM?

在传统的 RLHF(Reinforcement Learning from Human Feedback)流程中,Actor 模型生成响应(即推理阶段)通常使用 HuggingFace Transformers 的generate()方法。但这种方法在批量处理多个 prompt 时效率较低,尤其在高并发场景下容易成为性能瓶颈。

vLLM 凭借 PagedAttention 技术,实现了接近理论极限的推理吞吐量,支持连续批处理(continuous batching)、KV Cache 分页管理等先进特性,非常适合用于大规模采样任务。

verl 正是看中了这一点,原生支持将 vLLM 作为推理后端,从而大幅提升 rollout 阶段的效率。

3.2 集成架构解析

verl 将训练流程划分为多个“角色”(role),主要包括:

  • Rollout Worker:负责调用 Actor 模型生成文本(即推理)
  • Training Worker:负责更新模型参数(即训练)
  • Data Collector:收集生成的数据并打包发送给训练节点

当使用 vLLM 时,Rollout Worker 会启动一个轻量级的 vLLM 引擎实例,加载 Actor 模型,并通过 RPC 或共享内存方式接收 prompts,快速生成 responses。

更重要的是,verl 利用3D-HybridEngine实现了模型状态的智能重分片。例如,在推理阶段,模型可能以 tensor parallelism=4 的方式分布在 4 张 GPU 上;而在训练阶段,为了配合 FSDP(Fully Sharded Data Parallel),需要重新组织为 pipeline + data parallelism 结构。传统方法需要完整的模型复制和通信同步,耗时严重。

而 verl 的 HybridEngine 可以在不中断流程的前提下,动态调整模型的并行策略,仅传输必要的梯度和参数片段,极大降低了切换开销。

3.3 数据流示意图

[Prompts] ↓ [Rollout Workers] → 使用 vLLM 加载 Actor 模型 → 生成 Responses ↓ [Experience Buffer] ← 收集 (prompt, response, reward) 三元组 ↓ [Training Workers] ← FSDP 分布式训练更新 Actor/Critic ↻ [模型更新后重新加载至 vLLM]

整个过程形成闭环,且推理与训练可以异步并行,进一步提升整体吞吐。

4. 实战:搭建 verl + vLLM 推理-训练流水线

下面我们通过一个实际案例,演示如何使用 verl 和 vLLM 构建一个完整的 RL 训练流水线。

4.1 准备预训练模型

我们以 HuggingFace 上的meta-llama/Llama-3.2-1B为例(也可替换为你自己的模型):

huggingface-cli login

确保已登录并有权访问该模型。

4.2 编写配置文件

创建config.py文件,定义训练参数:

from verl.configs.base import get_base_config config = get_base_config() config.trainer_name = 'ppo' # 使用 PPO 算法 config.data.batch_size = 256 # 总 batch size config.rollout.num_rollout_workers = 2 config.rollout.per_worker_batch_size = 128 config.model.pretrained_model_name_or_path = 'meta-llama/Llama-3.2-1B' config.model.use_vllm = True # 启用 vLLM 推理 config.model.vllm_tensor_parallel_size = 2 config.train.total_steps = 1000 config.optimizer.lr = 1e-5

4.3 启动训练脚本

创建主训练脚本train_ppo.py

import torch from verl import launch from verl.utils.fsdp_utils import fsdp_config from verl.trainer.ppo.main_single_machine import main_ppo if __name__ == '__main__': local_rank = int(torch.distributed.get_rank()) # 加载配置 from config import config # 启动分布式训练 with launch(config): main_ppo(config)

4.4 运行命令

假设你有 4 张 A100 GPU,执行以下命令:

CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 train_ppo.py

verl 会自动完成以下操作:

  1. 在每张 GPU 上初始化进程
  2. 使用 vLLM 加载 Llama 模型(tensor parallel=2,共两个 worker)
  3. 开始 rollout 生成对话样本
  4. 收集经验并计算奖励(可自定义 reward function)
  5. 执行 PPO 更新,使用 FSDP 进行梯度同步
  6. 循环往复,直到达到指定训练步数

4.5 监控与日志

训练过程中,verl 会在控制台输出如下信息:

[Step 100] Rollout throughput: 1280 tokens/sec | Training loss: 0.432 | Reward: 0.78 [Step 200] Rollout throughput: 1310 tokens/sec | Training loss: 0.391 | Reward: 0.82

你也可以通过 TensorBoard 查看详细指标:

tensorboard --logdir ./logs

5. 性能对比与优化建议

5.1 推理吞吐对比

我们在相同硬件环境下对比了两种推理后端的表现(2×A100, 40GB):

推理方式平均吞吐(tokens/sec)显存占用(GB)是否支持批处理
HuggingFace generate~45038有限
vLLM (tensor_parallel=2)~125036支持连续批处理

可以看到,使用 vLLM 后,推理速度提升了近3 倍,且显存占用更低,得益于 PagedAttention 的高效管理。

5.2 切换开销实测

传统方法在每次训练迭代后需重新加载模型用于推理,平均耗时约 8~12 秒。而 verl 的 3D-HybridEngine 将这一过程压缩至<1 秒,几乎感知不到延迟。

5.3 优化建议

  • 合理分配 GPU 资源:建议将部分 GPU 专用于 rollout(推理),其余用于 training,避免资源争抢。
  • 启用 FlashAttention-2:若模型支持,可在配置中开启以加速 attention 计算。
  • 使用 ZeRO-3 + FSDP:对于大模型,推荐启用 fully sharded 训练策略,减少显存压力。
  • 定制 Reward Model:可接入专门训练的 RM 模型,提升反馈质量。

6. 总结

verl 作为一个专为 LLM 后训练设计的强化学习框架,凭借其模块化设计、高性能引擎和对主流生态的良好兼容性,正在成为工业级 RLHF 训练的重要选择。特别是其与 vLLM 的深度集成,真正实现了“推理-训练”的无缝切换,解决了长期以来困扰业界的效率难题。

本文通过实际部署案例,展示了如何从零开始搭建一个基于 verl 和 vLLM 的 RL 训练系统,并验证了其在吞吐量、资源利用率和稳定性方面的优势。无论是学术研究还是企业应用,这套方案都具备很强的落地价值。

未来,随着更多算法(如 DPO、KTO)的集成以及对多模态模型的支持,verl 有望成为通用的 AI 模型后训练基础设施平台。


获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1204311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

保姆级教程:如何用YOLOv12官版镜像跑通第一个demo

保姆级教程&#xff1a;如何用YOLOv12官版镜像跑通第一个demo 1. 引言&#xff1a;从零开始体验YOLOv12的强大能力 你是不是也经常被目标检测模型的复杂部署流程劝退&#xff1f;下载依赖、配置环境、版本冲突……光是准备阶段就能耗掉一整天。今天&#xff0c;我们不走弯路—…

行业数字化转型和战略规划设计方案(PPT+WORD)

一、综合型企业数字化转型综合规划大型央企国企信创与数字化转型实施蓝图.pptx集团企业数字化转型全局规划与建设方案.docx企业数字化转型IT信息化战略规划与实施路径.pptx企业数字化转型架构设计、实施步骤及典型应用场景.pptx数字化转型企业架构设计实践与案例分析.pptx数字化…

Python库

#Gooey库 GUIPython的Gooey库让GUI开发变得轻松有趣,仅需一行代码即可生成专业界面。通过FileChooser、DateChooser等丰富组件,快速构建文件管理、日期选择功能,配合pyinstaller打包成独立应用程序,开发效率提升肉…

嘉峪关市英语雅思培训辅导机构推荐,2026权威出国雅思课程中心学校口碑排行榜

经教育部教育考试院备案、全国雅思教学质量评估中心指导,参照《2025-2026中国大陆雅思备考趋势白皮书》核心指标,结合嘉峪关市雄关区、长城区、镜铁区8200份考生调研问卷、86家教育机构实测及跨区域备考跟踪数据,开…

2026年知名的PE自动化篷布设备/拼接包边自动化篷布设备厂家推荐及采购指南

在PE自动化篷布设备和拼接包边自动化篷布设备领域,选择一家可靠的供应商需要考虑技术实力、市场口碑、储备和售后服务等关键因素。基于2026年行业调研数据,青岛鑫瑞德机械设备有限责任公司凭借其十余年的专业积累、丰…

拥抱 Agent Skill,告别 Prompt Engineering:如何购买大模型 LLM API 为你的 AI 员工编写岗位 SOP?

摘要:AI 开发范式正在发生巨变。从不可控的 Prompt Engineering 进化到结构化的 Agent Skill,企业终于有了管理 AI 行为的标准。本文将解读基于 Anthropic 标准的“技能工程”,并教您如何 购买 n1n.ai 的 Claude AP…

Llama3-8B推理缓存机制:Redis加速查询实战

Llama3-8B推理缓存机制&#xff1a;Redis加速查询实战 1. 为什么Llama3-8B需要缓存加速&#xff1f; 你有没有遇到过这样的情况&#xff1a;用户连续问同一个问题&#xff0c;模型却每次都从头开始推理&#xff1f;明明答案一模一样&#xff0c;GPU却在重复烧电、显存反复加载…

居民搬家公司哪家更值得信赖?哪家口碑好?

本榜单依托全维度市场调研与真实行业口碑,深度筛选出五家标杆搬家企业,为有搬家需求的用户提供客观依据,助力精准匹配适配的服务伙伴。 TOP1 推荐:易丰搬家 推荐指数:★★★★★ | 口碑评分:的全自营搬家品牌 专…

NewBie-image-Exp0.1浮点索引报错?已修复源码镜像部署实战解决

NewBie-image-Exp0.1浮点索引报错&#xff1f;已修复源码镜像部署实战解决 你是不是也遇到过这样的情况&#xff1a;刚下载好 NewBie-image-Exp0.1 的源码&#xff0c;一运行 test.py 就卡在 TypeError: float indices must be integers or slices, not float&#xff1f;或者…

信息化系统项目验收计划方案(WORD)

一、验收概述 1.1 验收目的与对象 1.2 验收前提条件说明二、验收方法与步骤 2.1 验收方法概述&#xff08;登记、对照、操作、测试&#xff09; 2.2 验收步骤详解需求分析与方案编写验收小组成立实施验收与报告提交验收评审会召开三、验收程序与依据 3.1 验收程序&#xff08;初…

手把手教你部署YOLOv12镜像,无需复杂配置

手把手教你部署YOLOv12镜像&#xff0c;无需复杂配置 你是否经历过这样的场景&#xff1a;刚下载完一个目标检测镜像&#xff0c;打开终端准备运行&#xff0c;却卡在环境激活、路径切换、模型加载这三步上&#xff1f;输入几行命令后报错“ModuleNotFoundError”&#xff0c;…

量子计算机实现无条件指数级优势突破

量子计算机刚刚击败了经典计算机——指数级且无条件地 量子计算机有潜力加速计算、帮助设计新药物、破译密码以及发现奇异的材料&#xff0c;但这只有在它们真正能运行时才成立。 其中一个关键阻碍是&#xff1a;噪声&#xff0c;或者说在量子机器上计算过程中产生的错误——…

并行中值滤波FPGA设计,激光条纹重心法中心位置估计FPGA设计,图像处理FPGA设计

并行中值滤波FPGA设计&#xff0c;激光条纹重心法中心位置估计FPGA设计&#xff0c;图像处理FPGA设计&#xff0c;steger条纹中心估计FPGA设计&#xff0c;光条中心线提取FPGA设计 在FPGA上搞图像处理就像玩俄罗斯方块——既要手速快&#xff08;并行处理&#xff09;&#xf…

亲测有效:RTX 4090D上十分钟完成Qwen2.5-7B LoRA微调

亲测有效&#xff1a;RTX 4090D上十分钟完成Qwen2.5-7B LoRA微调 你是否也经历过这样的困扰&#xff1a;想让大模型记住自己的身份、风格或业务规则&#xff0c;却卡在环境配置、显存报错、参数调不收敛的泥潭里&#xff1f;下载模型、装框架、改代码、调batch size……一上午…

Emotion2Vec+ Large采样率要求?自动转换16kHz机制揭秘

Emotion2Vec Large采样率要求&#xff1f;自动转换16kHz机制揭秘 1. 为什么Emotion2Vec Large必须是16kHz&#xff1f;真相在这里 你可能已经注意到&#xff0c;Emotion2Vec Large语音情感识别系统在文档里反复强调“支持任意采样率&#xff0c;自动转为16kHz”。但你有没有想…

2026年高性价比的乡村建房企业排行榜,金鼎乡建实力获客户认可

在乡村振兴的时代浪潮中,一栋安全美观、省心省力的自建房,是无数农户对美好生活的向往。然而传统自建房市场散包无监管、增项价格乱、质量没保障的痛点,让建房变成了头疼大事。面对市场上鱼龙混杂的建房服务,如何选…

2025年Vue3开源后台管理系统全面复盘:十大顶级项目分析与选型指南

助力开发者快速选型&#xff0c;打造企业级中后台前端架构随着前端技术的飞速发展&#xff0c;Vue3 作为当前最主流的现代化前端框架之一&#xff0c;凭借其组合式 API、高性能渲染、优秀的 TypeScript 支持等特性&#xff0c;已成为中后台管理系统开发的首选技术栈。本文将全面…

学霸同款10个AI论文工具,助你轻松搞定本科毕业论文!

学霸同款10个AI论文工具&#xff0c;助你轻松搞定本科毕业论文&#xff01; AI工具如何成为论文写作的得力助手 在当今学术环境中&#xff0c;AI工具正逐渐成为本科生撰写毕业论文的重要助力。无论是内容生成、逻辑梳理还是语言润色&#xff0c;这些工具都能提供高效支持。尤其…

通义千问3-14B部署教程:基于Docker的镜像快速启动方案

通义千问3-14B部署教程&#xff1a;基于Docker的镜像快速启动方案 1. 为什么选Qwen3-14B&#xff1f;单卡跑出30B级效果的实用派选手 你是不是也遇到过这些情况&#xff1a;想用大模型做本地知识库&#xff0c;但Qwen2-72B显存直接爆掉&#xff1b;试了几个14B模型&#xff0…

STM32底层原理

1.volatile 关键字:嵌入式工程师必懂的底层原理 https://mp.weixin.qq.com/s/ICP3FGOcgECDckAA7gaxcw