用PyTorch-2.x-Universal-Dev-v1.0完成了人生第一个AI项目

用PyTorch-2.x-Universal-Dev-v1.0完成了人生第一个AI项目

1. 引言:从零开始的AI初体验

坦白说,动手做这个项目之前,我对大模型微调这件事是既向往又害怕。向往的是能亲手打造一个属于自己的智能助手,害怕的是复杂的环境配置和动辄几百行的代码。但当我真正用上PyTorch-2.x-Universal-Dev-v1.0这个镜像时,一切都变得简单了。

这个镜像就像一位贴心的向导,它已经帮我把所有常用的工具都准备好了——Pandas、Numpy处理数据,Matplotlib画图,JupyterLab写代码,甚至连国内源都给你配好,下载速度飞快。最让我感动的是,它“去除了冗余缓存”,系统非常纯净,没有那些乱七八糟的东西干扰你。这让我能心无旁骛地专注于学习本身,而不是在解决环境问题上浪费时间。

本文将记录我如何利用这个强大的开发环境,完成对Llama3模型的中文能力微调。整个过程会遇到各种坑,比如显存不足、依赖冲突,但我会一步步带你解决。相信读完这篇文章,你也能自信地说:“我也能做一个AI项目!”

2. 环境验证与快速启动

2.1 验证GPU可用性

拿到环境的第一件事,就是确认我们的“算力心脏”——GPU是否正常工作。在终端里输入两条命令:

nvidia-smi python -c "import torch; print(torch.cuda.is_available())"

如果一切顺利,你会看到类似True的输出。这说明PyTorch已经成功识别到了你的GPU,可以开始进行深度学习训练了。这是迈向成功的第一步,非常重要。

2.2 克隆并激活专属环境

为了不污染基础环境,我们创建一个独立的conda环境来运行项目。

# 创建名为 llama_factory_torch 的新环境,并克隆base环境 conda create -n llama_factory_torch --clone base # 激活环境 source activate llama_factory_torch

执行完这些命令后,你的命令行提示符前面应该会出现(llama_factory_torch),这就表示你已经进入了为项目量身定制的工作空间。

3. 安装核心框架LLaMA-Factory

LLaMA-Factory是一个开源的大语言模型微调框架,它让复杂的微调过程变得像搭积木一样简单。我们通过pip安装它。

# 在LLaMA-Factory项目根目录下执行 pip install -e ".[torch,metrics]"

这条命令中的-e表示“可编辑安装”,意味着你可以直接修改框架的源码,非常适合学习和调试。安装过程中可能会出现一些关于非标准版本号的警告(如lmdeploy),但只要最终显示Successfully installed,就可以忽略这些警告。

3.1 解决依赖包冲突

在安装vllm推理引擎时,我发现了一个常见的依赖冲突问题。

# 原始命令导致冲突 pip install vllm==0.4.3 # 冲突信息 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. lmdeploy 0.1.0-git782048c.abi0.dtk2404.torch2.1. requires transformers==4.33.2, but you have transformers 4.43.3 which is incompatible.

解决方案:使用--no-deps参数跳过依赖检查,强制安装。

pip install --no-dependencies vllm==0.4.3

这样做虽然有点“暴力”,但在确保其他关键依赖(如transformers)版本正确的情况下,是安全且高效的。

4. 私有化部署Llama3模型

4.1 下载模型文件

我们以Llama3-8B-Instruct为例,从ModelScope下载模型权重。

mkdir models cd models git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

4.2 启动Web服务

使用LLaMA-Factory提供的webui.py脚本,一键启动可视化界面。

python src/webui.py \ --model_name_or_path "/path/to/your/models/Meta-Llama-3-8B-Instruct" \ --template llama3 \ --infer_backend vllm \ --vllm_enforce_eager

服务启动后,会输出一个本地访问地址(如http://0.0.0.0:7860)。通过浏览器访问这个地址,就能看到一个功能完整的聊天界面。此时的模型还不会中文,但它已经具备了强大的英文对话能力。

5. 中文能力微调实战

5.1 准备中文数据集

为了让模型学会中文,我们需要用中文数据集对其进行微调。这里我们选用alpaca_zh数据集。

# 下载数据集 git clone https://www.modelscope.cn/datasets/llamafactory/alpaca_zh.git # 将数据文件复制到LLaMA-Factory的data目录 cp alpaca_data_zh_51k.json ./LLaMA-Factory/data/ # 修改 data/dataset_info.json 文件,注册本地数据集 # 将 "ms_hub_url": "..." 改为 "file_name": "alpaca_data_zh_51k.json"

5.2 配置多卡分布式训练

单张显卡无法承载Llama3-8B这么大的模型,我们必须使用多卡训练。LLaMA-Factory推荐使用DeepSpeed ZeRO-3技术来节省显存。

我们修改examples/train_lora/llama3_lora_sft.yaml配置文件:

# 模型路径 model_name_or_path: models/Meta-Llama-3-8B-Instruct # 启用DeepSpeed deepspeed: examples/deepspeed/ds_z3_config.json # 训练参数 stage: sft finetuning_type: lora lora_target: all per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 5.0e-5 # 注意:必须写成5.0e-5,不能写5e-5 num_train_epochs: 1.0 bf16: true # 数据集 dataset: alpaca_zh template: llama3 # 输出 output_dir: saves/llama3-8b/lora/sft save_steps: 100 logging_steps: 5

5.3 执行微调任务

使用llamafactory-cli工具启动训练。

FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

训练过程大约持续90分钟。从日志中可以看到,模型的损失(loss)从最初的2.5逐渐下降到2.3左右,说明模型正在有效地学习。

6. 合并与推理:见证成果

6.1 合并LoRA适配器

微调完成后,我们得到的是一个轻量级的LoRA权重文件。需要将其与原始模型合并,才能得到一个完整的新模型。

创建examples/merge_lora/llama3_lora_sft.yaml配置文件:

model_name_or_path: models/Meta-Llama-3-8B-Instruct adapter_name_or_path: saves/llama3-8b/lora/sft finetuning_type: lora export_dir: output/llama3_lora_sft export_device: cpu # 推荐在CPU上合并,避免占用GPU资源

执行合并命令:

llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml

6.2 测试微调后的模型

最后,让我们测试一下这个注入了中文知识的“新生命”。

llamafactory-cli chat examples/inference/llama3_lora_sft.yaml

在交互式命令行中输入问题:

User: 中国深圳有哪些旅游景点 Assistant: 深圳是一个旅游目的地,拥有许多旅游景点,以下是一些主要的旅游景点: 1. **Window of the World**(世界之窗)... 2. **Splendid China Folk Village**(锦绣中华民俗文化村)... ...

看着模型流利地用中文回答问题,那一刻的成就感,真的难以言表。这就是我人生第一个AI项目的终点,也是新征程的起点。

7. 总结与心得

回顾整个项目,我最大的体会是:工欲善其事,必先利其器。如果没有PyTorch-2.x-Universal-Dev-v1.0这样开箱即用的环境,我可能早就被繁琐的环境配置劝退了。

这次实践也让我深刻理解了几个关键技术点:

  • LoRA微调:只训练一小部分参数,大大降低了硬件门槛。
  • DeepSpeed ZeRO-3:通过将优化器状态、梯度和参数分片到不同GPU,实现了超大模型的训练。
  • 模型合并:将微调的增量权重与原模型融合,生成一个可以直接部署的独立模型。

这个项目只是一个开始。未来,我可以尝试用更多领域的数据来微调模型,让它成为某个垂直领域的专家。AI的世界充满无限可能,而我已经迈出了坚实的第一步。


获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1203008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索Dobby:构建跨平台函数拦截系统的终极实践指南

探索Dobby:构建跨平台函数拦截系统的终极实践指南 【免费下载链接】Dobby a lightweight, multi-platform, multi-architecture hook framework. 项目地址: https://gitcode.com/gh_mirrors/do/Dobby Dobby是一款轻量级、多平台、多架构的函数拦截框架&#…

告别黑苹果EFI构建难题:OpCore-Simplify工具的革新方案

告别黑苹果EFI构建难题:OpCore-Simplify工具的革新方案 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 黑苹果爱好者的共同挑战 对于许多…

YimMenu游戏体验增强工具完全指南

YimMenu游戏体验增强工具完全指南 【免费下载链接】YimMenu YimMenu, a GTA V menu protecting against a wide ranges of the public crashes and improving the overall experience. 项目地址: https://gitcode.com/GitHub_Trending/yi/YimMenu 在GTA5的开放世界中&am…

7个高效技巧:用音乐解析工具实现无损音乐下载与多平台音频提取

7个高效技巧:用音乐解析工具实现无损音乐下载与多平台音频提取 【免费下载链接】Netease_url 网易云无损解析 项目地址: https://gitcode.com/gh_mirrors/ne/Netease_url 音乐解析工具作为数字音乐爱好者的必备利器,能够帮助用户轻松获取高品质音…

智能陪伴焕新数字生活:BongoCat带来沉浸式桌面互动新体验

智能陪伴焕新数字生活:BongoCat带来沉浸式桌面互动新体验 【免费下载链接】BongoCat 让呆萌可爱的 Bongo Cat 陪伴你的键盘敲击与鼠标操作,每一次输入都充满趣味与活力! 项目地址: https://gitcode.com/gh_mirrors/bong/BongoCat 你是…

高效抓取Instagram媒体:Instaloader的全面指南

高效抓取Instagram媒体:Instaloader的全面指南 【免费下载链接】instaloader Download pictures (or videos) along with their captions and other metadata from Instagram. 项目地址: https://gitcode.com/gh_mirrors/in/instaloader Instaloader是一款基…

开箱即用:通义千问3-14B在RTX 4090上的快速体验

开箱即用:通义千问3-14B在RTX 4090上的快速体验 你有没有试过,手握一块RTX 4090显卡,却只能跑些“小模型”?要么性能不够,要么部署复杂,真正能用的开源大模型少之又少。今天咱们不玩虚的,直接上…

突破Transformer部署瓶颈:FlashAttention与ONNX融合的工业级优化方案

突破Transformer部署瓶颈:FlashAttention与ONNX融合的工业级优化方案 【免费下载链接】flash-attention 项目地址: https://gitcode.com/gh_mirrors/fla/flash-attention 在实时语音识别系统中,当 utterance 长度超过 2048 tokens 时&#xff0c…

音频转文字全攻略:Buzz离线处理与多场景应用解决方案

音频转文字全攻略:Buzz离线处理与多场景应用解决方案 【免费下载链接】buzz Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAIs Whisper. 项目地址: https://gitcode.com/GitHub_Trending/buz/buzz 在信息爆炸的…

用Z-Image-Turbo打造专属艺术风格,简单又高效

用Z-Image-Turbo打造专属艺术风格,简单又高效 你是否也曾被那些惊艳的AI生成画作吸引,却又因为复杂的部署流程、漫长的出图时间或对显卡的高要求而望而却步?现在,这一切都变了。阿里通义实验室推出的 Z-Image-Turbo,正…

7个硬核技巧:用猫抓实现全场景媒体资源下载自由

7个硬核技巧:用猫抓实现全场景媒体资源下载自由 【免费下载链接】cat-catch 猫抓 chrome资源嗅探扩展 项目地址: https://gitcode.com/GitHub_Trending/ca/cat-catch 作为一款强大的视频嗅探工具,猫抓(cat-catch)浏览器扩展…

黑苹果配置工具OpCore Simplify:让OpenCore自动配置不再是难题

黑苹果配置工具OpCore Simplify:让OpenCore自动配置不再是难题 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 你是否也曾被黑苹果配置过程…

猫抓cat-catch全场景应用指南:从媒体资源捕获到网页流媒体解析的实战方案

猫抓cat-catch全场景应用指南:从媒体资源捕获到网页流媒体解析的实战方案 【免费下载链接】cat-catch 猫抓 chrome资源嗅探扩展 项目地址: https://gitcode.com/GitHub_Trending/ca/cat-catch 视频捕获工具、媒体资源下载与网页流媒体解析正成为数字内容管理…

Deform变形系统避坑指南:新手必知的三大核心问题解决方案

Deform变形系统避坑指南:新手必知的三大核心问题解决方案 【免费下载链接】Deform A fully-featured deformer system for Unity. 项目地址: https://gitcode.com/gh_mirrors/de/Deform Deform是Unity平台上的全功能变形系统,通过堆叠式效果实现模…

智能配置工具:硬件适配与系统搭建的无缝解决方案

智能配置工具:硬件适配与系统搭建的无缝解决方案 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 对于零基础用户而言,黑苹果系…

性能优化:让Cute_Animal_For_Kids_Qwen_Image生成速度提升50%

性能优化:让Cute_Animal_For_Kids_Qwen_Image生成速度提升50% 1. 引言:为什么我们需要更快的儿童向动物图片生成? 你有没有遇到过这样的情况:孩子指着屏幕说“爸爸,我想看一只穿雨靴的小鸭子”,你赶紧打开…

亲测有效!用Unsloth微调中文LLM真实体验分享

亲测有效!用Unsloth微调中文LLM真实体验分享 你是不是也经历过这样的困扰:想微调一个中文大模型,但一打开训练脚本就看到满屏的显存报错?刚跑两步,GPU内存就飙到98%,训练中断、重启、再中断……反复折腾三…

MinerU教育场景落地:试卷数字化系统构建完整指南

MinerU教育场景落地:试卷数字化系统构建完整指南 1. 引言:为什么教育行业需要试卷数字化? 在传统教学流程中,教师和教研人员每天都要处理大量纸质或PDF格式的试卷。这些文档往往包含复杂的排版结构——多栏布局、数学公式、图表…

如何高效提取网络资源?3步掌握网页资源保存技巧

如何高效提取网络资源?3步掌握网页资源保存技巧 【免费下载链接】cat-catch 猫抓 chrome资源嗅探扩展 项目地址: https://gitcode.com/GitHub_Trending/ca/cat-catch 在信息爆炸的数字时代,我们每天浏览大量网页内容,从精彩的视频片段…

颠覆认知:BongoCat重新定义数字时代的人机交互革命

颠覆认知:BongoCat重新定义数字时代的人机交互革命 【免费下载链接】BongoCat 让呆萌可爱的 Bongo Cat 陪伴你的键盘敲击与鼠标操作,每一次输入都充满趣味与活力! 项目地址: https://gitcode.com/gh_mirrors/bong/BongoCat 你是否曾在…