人群仿真软件:Pathfinder_(5).人群行为设置

人群行为设置

在使用Pathfinder进行人群仿真时,人群行为的设置是关键的一环。人群行为设置决定了仿真过程中个体的行为模式、决策过程以及相互之间的互动。本节将详细介绍如何在Pathfinder中设置人群行为,包括基本行为参数、行为策略、行为触发条件以及行为状态的转换。

基本行为参数

Pathfinder允许用户为仿真中的每个个体设置基本行为参数。这些参数包括行走速度、反应时间、目标准确性等,直接影响个体在仿真环境中的表现。

行走速度

行走速度是描述个体在没有障碍和干扰情况下移动的速度。Pathfinder允许用户为不同类型的个体设置不同的行走速度。例如,儿童和老年人的行走速度通常较慢,而成年人的行走速度较快。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为”面板中设置“行走速度”。

代码示例:

假设你正在使用Pathfinder的API进行二次开发,可以使用以下代码设置行走速度:

# 导入Pathfinder APIimportpathfinderaspf# 创建仿真场景scene=pf.Scene("example_scene")# 创建人群类型adults=pf.AgentType("Adults")children=pf.AgentType("Children")seniors=pf.AgentType("Seniors")# 设置行走速度adults.set_walk_speed(1.4)# 单位:米/秒children.set_walk_speed(1.0)# 单位:米/秒seniors.set_walk_speed(1.2)# 单位:米/秒# 将人群类型添加到场景中scene.add_agent_type(adults)scene.add_agent_type(children)scene.add_agent_type(seniors)# 保存场景scene.save("example_scene.xml")

描述:

上述代码首先导入了Pathfinder的API,然后创建了一个仿真场景。接着,定义了三种不同的人群类型(成人、儿童、老年人),并分别为它们设置了不同的行走速度。最后,将这些人群类型添加到场景中并保存。

反应时间

反应时间是指个体对环境变化做出反应所需的时间。例如,当检测到前方有障碍物时,个体需要时间来调整自己的行走路径。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为”面板中设置“反应时间”。

代码示例:

# 设置反应时间adults.set_reaction_time(0.5)# 单位:秒children.set_reaction_time(0.7)# 单位:秒seniors.set_reaction_time(0.6)# 单位:秒

描述:

上述代码为三种不同类型的人群设置了不同的反应时间。成人反应时间为0.5秒,儿童为0.7秒,老年人为0.6秒。这反映了不同年龄段的人在面对突发情况时的反应差异。

目标准确性

目标准确性是指个体在行走过程中偏离目标路径的程度。较低的目标准确性会导致个体的行走路径更加随机和不可预测。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为”面板中设置“目标准确性”。

代码示例:

# 设置目标准确性adults.set_target_accuracy(0.1)# 单位:米children.set_target_accuracy(0.2)# 单位:米seniors.set_target_accuracy(0.15)# 单位:米

描述:

上述代码为三种不同类型的人群设置了不同的目标准确性。成人目标准确性为0.1米,儿童为0.2米,老年人为0.15米。这反映了不同年龄段的人在行走时的路径准确性差异。

行为策略

Pathfinder提供了多种行为策略,包括避障策略、目标选择策略、路径选择策略等。这些策略决定了个体在特定情况下的行为模式。

避障策略

避障策略决定了个体如何在遇到障碍物时调整自己的行走路径。Pathfinder默认使用social force模型,但用户可以根据需要选择其他模型或自定义模型。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为策略”面板中选择或配置避障策略。

代码示例:

# 设置避障策略adults.set_avoidance_model("SocialForce")children.set_avoidance_model("RandomWalk")seniors.set_avoidance_model("SocialForce")

描述:

上述代码为成人和老年人设置了默认的SocialForce避障策略,而为儿童设置了RandomWalk避障策略。这样可以模拟儿童在遇到障碍时更加随机的行走行为。

目标选择策略

目标选择策略决定了个体如何选择自己的下一个目标。常见的目标选择策略包括最近目标、随机目标、优先目标等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为策略”面板中选择或配置目标选择策略。

代码示例:

# 设置目标选择策略adults.set_target_selection("Nearest")children.set_target_selection("Random")seniors.set_target_selection("Nearest")

描述:

上述代码为成人和老年人设置了“最近目标”选择策略,而为儿童设置了“随机目标”选择策略。这样可以模拟儿童在选择目标时的随机性。

路径选择策略

路径选择策略决定了个体如何选择从当前位置到下一个目标的路径。常见的路径选择策略包括最短路径、最宽路径、最安全路径等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为策略”面板中选择或配置路径选择策略。

代码示例:

# 设置路径选择策略adults.set_path_selection("Shortest")children.set_path_selection("Widest")seniors.set_path_selection("Safest")

描述:

上述代码为成人设置了“最短路径”选择策略,为儿童设置了“最宽路径”选择策略,为老年人设置了“最安全路径”选择策略。这样可以模拟不同年龄段的人在路径选择上的偏好差异。

行为触发条件

在Pathfinder中,行为触发条件决定了个体在何时何地执行特定的行为。例如,当个体检测到前方有火灾时,可以选择逃生行为。

触发条件的定义

触发条件可以通过编写脚本或使用图形界面来定义。常见的触发条件包括时间、位置、环境变化等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为触发条件”面板中定义触发条件。

代码示例:

假设你使用Pathfinder的API来定义一个触发条件,当个体检测到前方有火灾时,选择逃生行为:

# 定义触发条件deffire_trigger(agent,environment):""" 检查个体前方是否有火灾 :param agent: 个体对象 :param environment: 环境对象 :return: 是否触发逃生行为 """# 获取个体前方的位置front_position=agent.get_front_position()# 检查前方位置是否有火灾ifenvironment.is_fire_at_position(front_position):returnTruereturnFalse# 将触发条件添加到成人人群类型adults.add_trigger("Evacuate",fire_trigger)

描述:

上述代码定义了一个名为fire_trigger的触发条件函数。该函数检查个体前方的位置是否有火灾,如果有火灾则返回True,触发逃生行为。然后将这个触发条件添加到成人人群类型中。

行为状态的转换

在Pathfinder中,个体的行为状态可以随着时间、环境等因素的变化而转换。例如,个体可能从正常行走状态转换为紧急逃生状态。

行为状态的定义

Pathfinder允许用户定义多种行为状态,每种状态对应不同的行为模式。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“行为状态”面板中定义行为状态。

代码示例:

假设你使用Pathfinder的API来定义一个行为状态转换,当个体检测到火灾时从正常行走状态转换为紧急逃生状态:

# 定义行为状态classNormalState(pf.BehaviorState):defupdate(self,agent,environment):""" 更新个体的正常行走状态 :param agent: 个体对象 :param environment: 环境对象 """agent.move_to_target()classEvacuateState(pf.BehaviorState):defupdate(self,agent,environment):""" 更新个体的紧急逃生状态 :param agent: 个体对象 :param environment: 环境对象 """agent.find_nearest_exit()agent.move_to_target()# 定义状态转换规则classStateMachine:def__init__(self,agent):self.agent=agent self.current_state=NormalState()defupdate(self,environment):""" 更新个体的行为状态 :param environment: 环境对象 """iffire_trigger(self.agent,environment):self.current_state=EvacuateState()self.current_state.update(self.agent,environment)# 为成人创建状态机adult_state_machine=StateMachine(adults)# 更新仿真环境defupdate_simulation(scene):environment=scene.get_environment()foragentinscene.get_agents():agent.state_machine.update(environment)# 运行仿真scene.run_simulation(update_simulation)

描述:

上述代码定义了两个行为状态类:NormalStateEvacuateStateNormalState类表示个体的正常行走状态,EvacuateState类表示个体的紧急逃生状态。StateMachine类负责根据触发条件fire_trigger来更新个体的行为状态。最后,update_simulation函数在仿真过程中更新每个个体的状态机。

行为的自定义

除了预定义的行为策略和触发条件,Pathfinder还支持用户自定义行为。这可以通过编写脚本或插件来实现。

自定义行为的编写

自定义行为的编写需要遵循Pathfinder的API规范。用户可以通过继承pf.Behavior类来定义自己的行为。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“自定义行为”面板中编写或导入自定义行为脚本。

代码示例:

假设你需要定义一个自定义行为,当个体检测到前方有拥挤时降低行走速度:

# 定义自定义行为classSlowDownBehavior(pf.Behavior):def__init__(self,agent,threshold=5):""" 初始化自定义行为 :param agent: 个体对象 :param threshold: 拥挤阈值 """self.agent=agent self.threshold=thresholddefupdate(self,environment):""" 更新个体的行为 :param environment: 环境对象 """# 获取个体前方的位置front_position=self.agent.get_front_position()# 检查前方位置的拥挤程度ifenvironment.get_crowd_density(front_position)>self.threshold:# 降低行走速度self.agent.set_walk_speed(0.8)else:# 恢复正常行走速度self.agent.set_walk_speed(1.4)# 为成人添加自定义行为adults.add_behavior("SlowDown",SlowDownBehavior(adults,threshold=5))

描述:

上述代码定义了一个名为SlowDownBehavior的自定义行为类。该类在更新时检查个体前方的拥挤程度,如果超过阈值则降低行走速度,否则恢复正常行走速度。然后将这个自定义行为添加到成人人群类型中。

行为的可视化

在Pathfinder中,可以通过可视化工具来观察和分析个体的行为。这有助于用户更好地理解和调整仿真结果。

可视化设置

Pathfinder提供了多种可视化选项,包括个体轨迹、行为状态、拥挤程度等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“可视化”选项卡中选择需要显示的可视化内容。

  4. 配置可视化参数。

代码示例:

假设你使用Pathfinder的API来配置可视化设置,显示个体的轨迹和行为状态:

# 配置可视化设置scene.set_visualization("Trajectories",True)scene.set_visualization("BehaviorStates",True)# 运行仿真并显示可视化结果scene.run_simulation(update_simulation,visualize=True)

描述:

上述代码首先配置了仿真场景的可视化选项,显示个体的轨迹和行为状态。然后在运行仿真时开启了可视化功能,使用户能够在仿真过程中实时观察个体的行为。

行为数据的记录和分析

在Pathfinder中,可以记录仿真过程中个体的行为数据,并进行分析。这有助于评估仿真结果的准确性和可靠性。

数据记录

Pathfinder支持记录多种行为数据,包括个体的位置、速度、行为状态等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“数据记录”选项卡中选择需要记录的数据类型。

  4. 配置数据记录参数。

代码示例:

假设你使用Pathfinder的API来记录个体的位置和速度数据:

# 配置数据记录scene.enable_data_recording("Position",True)scene.enable_data_recording("Speed",True)# 定义数据处理函数defprocess_data(agent,data):""" 处理记录的数据 :param agent: 个体对象 :param data: 数据对象 """position=data.get_position(agent)speed=data.get_speed(agent)print(f"Agent{agent.id}at position{position}with speed{speed}")# 运行仿真并处理数据scene.run_simulation(update_simulation,data_processor=process_data)

描述:

上述代码首先配置了仿真场景的数据记录选项,记录个体的位置和速度数据。然后定义了一个数据处理函数process_data,该函数在仿真过程中处理记录的数据并输出到控制台。最后在运行仿真时指定了数据处理函数。

行为的优化

在Pathfinder中,可以通过优化行为参数来提高仿真结果的准确性和效率。优化方法包括参数调优、行为模型改进等。

参数调优

参数调优是指通过调整行为参数来优化仿真结果。常见的参数包括行走速度、反应时间、目标准确性等。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要优化的基本人群类型。

  4. 在“行为”面板中调整参数值。

代码示例:

假设你使用Pathfinder的API来进行参数调优,通过多次仿真来找到最优的行走速度:

# 参数调优best_speed=0best_evacuation_time=float('inf')forspeedin[1.0,1.2,1.4,1.6,1.8]:adults.set_walk_speed(speed)scene.save("example_scene.xml")evacuation_time=scene.run_simulation(update_simulation,visualize=False)ifevacuation_time<best_evacuation_time:best_speed=speed best_evacuation_time=evacuation_time# 设置最优行走速度adults.set_walk_speed(best_speed)scene.save("optimized_example_scene.xml")

描述:

上述代码通过多次仿真来调整成人的人群行走速度,记录每次仿真的疏散时间。最终选择疏散时间最短的行走速度作为最优值,并保存优化后的场景。

行为模型改进

行为模型改进是指通过修改或扩展行为模型来提高仿真结果的准确性。这可以通过编写自定义模型或使用更复杂的模型来实现。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“行为模型”选项卡中选择需要改进的模型。

  4. 编写或导入自定义模型。

代码示例:

假设你使用Pathfinder的API来改进避障模型,增加个体对前方障碍物的感知距离:

# 改进避障模型classEnhancedAvoidanceModel:def__init__(self,agent,perception_distance=2.0):""" 初始化改进的避障模型 :param agent: 个体对象 :param perception_distance: 感知距离 """self.agent=agent self.perception_distance=perception_distancedefupdate(self,environment):""" 更新个体的避障行为 :param environment: 环境对象 """front_position=self.agent.get_front_position()obstacles=environment.get_obstacles_within_distance(front_position,self.perception_distance)ifobstacles:self.agent.avoid_obstacles(obstacles)# 为成人设置改进的避障模型adults.set_avoidance_model(EnhancedAvoidanceModel(adults,perception_distance=2.0))

描述:

上述代码定义了一个名为EnhancedAvoidanceModel的改进避障模型类。该类在更新时会检查个体前方一定距离内的障碍物,并进行避障。然后将这个改进的避障模型设置为成人人群类型的行为模型。

行为的交互

在Pathfinder中,个体之间的交互是仿真中非常重要的一部分。交互行为包括避让、跟随、推挤等,这些行为会影响个体的行走路径和速度,进而影响整个仿真结果的准确性和真实性。

交互行为的设置

交互行为的设置决定了个体在与其他人交互时的行为模式。例如,个体在避让其他个体时的反应方式、跟随其他个体时的速度调整、以及在高密度区域中的推挤行为。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“交互行为”面板中选择或配置交互行为。

代码示例:

假设你需要设置成人个体在避让其他个体时的反应方式,以及在跟随其他个体时的速度调整:

# 定义避让行为classAvoidanceBehavior(pf.Behavior):def__init__(self,agent,avoidance_distance=1.5):""" 初始化避让行为 :param agent: 个体对象 :param avoidance_distance: 避让距离 """self.agent=agent self.avoidance_distance=avoidance_distancedefupdate(self,environment):""" 更新个体的避让行为 :param environment: 环境对象 """front_position=self.agent.get_front_position()nearby_agents=environment.get_agents_within_distance(front_position,self.avoidance_distance)ifnearby_agents:self.agent.avoid_agents(nearby_agents)# 定义跟随行为classFollowingBehavior(pf.Behavior):def__init__(self,agent,following_distance=3.0,speed_factor=0.8):""" 初始化跟随行为 :param agent: 个体对象 :param following_distance: 跟随距离 :param speed_factor: 跟随时的速度调整因子 """self.agent=agent self.following_distance=following_distance self.speed_factor=speed_factordefupdate(self,environment):""" 更新个体的跟随行为 :param environment: 环境对象 """front_position=self.agent.get_front_position()leader=environment.get_leader_within_distance(front_position,self.following_distance)ifleader:self.agent.set_walk_speed(leader.get_walk_speed()*self.speed_factor)self.agent.follow(leader)else:self.agent.set_walk_speed(1.4)# 恢复默认行走速度# 为成人添加交互行为adults.add_behavior("Avoidance",AvoidanceBehavior(adults,avoidance_distance=1.5))adults.add_behavior("Following",FollowingBehavior(adults,following_distance=3.0,speed_factor=0.8))

描述:

上述代码定义了两个交互行为类:AvoidanceBehaviorFollowingBehaviorAvoidanceBehavior类在更新时检查个体前方一定距离内的其他个体,并进行避让。FollowingBehavior类在更新时寻找个体前方一定距离内的领导个体,并调整自己的行走速度以跟随领导个体。然后将这些交互行为添加到成人人群类型中。

行为的高级设置

除了基本的行为参数和策略,Pathfinder还提供了高级设置选项,以进一步细化和优化个体的行为。

社会行为

社会行为是指个体在仿真过程中表现出的社会互动,例如个体之间的交流、合作和竞争等。Pathfinder支持多种社会行为模型,用户可以根据需要选择或自定义模型。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“人群”选项卡中选择需要设置的基本人群类型。

  4. 在“社会行为”面板中选择或配置社会行为模型。

代码示例:

假设你需要定义一个社会行为模型,使个体在遇到其他个体时进行简单的交流:

# 定义社会行为模型classSocialInteractionModel:def__init__(self,agent,interaction_distance=2.0):""" 初始化社会行为模型 :param agent: 个体对象 :param interaction_distance: 交流距离 """self.agent=agent self.interaction_distance=interaction_distancedefupdate(self,environment):""" 更新个体的社会行为 :param environment: 环境对象 """front_position=self.agent.get_front_position()nearby_agents=environment.get_agents_within_distance(front_position,self.interaction_distance)ifnearby_agents:forother_agentinnearby_agents:ifother_agent!=self.agent:self.agent.interact_with(other_agent)# 为成人设置社会行为模型adults.set_social_behavior(SocialInteractionModel(adults,interaction_distance=2.0))

描述:

上述代码定义了一个名为SocialInteractionModel的社会行为模型类。该类在更新时会检查个体前方一定距离内的其他个体,并进行简单的交流。然后将这个社会行为模型设置为成人人群类型的行为模型。

行为的验证和调试

在Pathfinder中,行为的验证和调试是确保仿真结果准确性和可靠性的关键步骤。用户可以通过多种方法来验证和调试行为设置。

行为验证

行为验证是指通过对比仿真结果与实际数据来评估行为设置的准确性。这可以通过设置验证指标、进行多次仿真并分析结果来实现。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“验证”选项卡中设置验证指标。

  4. 运行多次仿真并分析结果。

代码示例:

假设你需要验证仿真中成人个体的避障行为是否合理:

# 设置验证指标defvalidate_avoidance(scene):""" 验证避障行为 :param scene: 仿真场景对象 """environment=scene.get_environment()foragentinscene.get_agents():front_position=agent.get_front_position()obstacles=environment.get_obstacles_within_distance(front_position,1.0)ifobstacles:ifnotagent.is_avoiding_obstacles():print(f"Agent{agent.id}failed to avoid obstacles at{front_position}")# 运行仿真并进行验证scene.run_simulation(update_simulation,validate=validate_avoidance)

描述:

上述代码定义了一个验证函数validate_avoidance,该函数在仿真过程中检查每个成人个体是否在遇到障碍物时正确地进行了避障。如果某个个体没有避障,则输出一条错误信息。然后在运行仿真时指定了验证函数。

行为调试

行为调试是指通过查看个体的行为日志、路径轨迹等信息来查找和修复行为设置中的问题。这可以通过启用调试模式、记录详细日志来实现。

设置方法:

  1. 打开Pathfinder软件。

  2. 导入或创建仿真场景。

  3. 在“调试”选项卡中启用调试模式。

  4. 配置调试参数。

代码示例:

假设你需要启用调试模式并记录详细日志,以便于调试成人个体的行为:

# 启用调试模式scene.enable_debug_mode(True)# 定义日志记录函数deflog_behavior(agent,environment):""" 记录个体的行为日志 :param agent: 个体对象 :param environment: 环境对象 """position=agent.get_position()speed=agent.get_walk_speed()state=agent.get_behavior_state()print(f"Agent{agent.id}at position{position}, speed{speed}, state{state}")# 为成人设置日志记录adults.set_behavior_logger(log_behavior)# 运行仿真并记录日志scene.run_simulation(update_simulation,debug=True)

描述:

上述代码首先启用了仿真场景的调试模式。然后定义了一个日志记录函数log_behavior,该函数在仿真过程中记录每个成人个体的位置、速度和行为状态。最后在运行仿真时指定了调试模式并开启了日志记录功能。

总结

在Pathfinder中设置和优化人群行为是确保仿真结果准确性和真实性的关键步骤。通过合理设置基本行为参数、选择合适的行为策略、定义有效的行为触发条件、设置交互行为、以及进行行为的验证和调试,用户可以创建出高度逼真的仿真场景。这些设置不仅能够模拟不同年龄段和类型的个体行为,还能反映出个体在复杂环境中的决策和互动,为人群管理和安全设计提供有力支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1201806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人群仿真软件:Pathfinder_(6).出口与路径定义

出口与路径定义 在人群仿真软件中&#xff0c;定义出口和路径是非常关键的步骤。这些定义不仅决定了人员的疏散方向&#xff0c;还直接影响了仿真结果的准确性和可靠性。本节将详细介绍如何在Pathfinder中定义出口和路径&#xff0c;包括路径网络的构建、出口属性的设置以及如何…

人群仿真软件:Pathfinder_(4).环境建模与场景创建

环境建模与场景创建 在人群仿真软件中&#xff0c;环境建模与场景创建是至关重要的步骤。这一部分将详细介绍如何在Pathfinder中创建和配置仿真环境&#xff0c;包括几何建模、场景设置、材料属性以及动态障碍物的处理。通过这些内容&#xff0c;您将能够掌握如何创建复杂的仿真…

SaaS、PaaS、IaaS?

什么&#xff0c;是 SaaS、PaaS、IaaS &#xff1f;

全网最全MBA必备AI论文工具TOP9:开题报告文献综述全解析

全网最全MBA必备AI论文工具TOP9&#xff1a;开题报告文献综述全解析 2026年MBA论文写作工具测评&#xff1a;为何需要这份榜单&#xff1f; 随着人工智能技术的不断进步&#xff0c;AI论文工具在学术研究中的应用日益广泛。对于MBA学生而言&#xff0c;撰写开题报告、文献综述…

测试失败堆成山?用机器学习快速定位根本原因,研发效率翻倍!

做研发/QA的你&#xff0c;是不是经常被CI流水线里的红色测试警告搞得头大&#xff1f;赶着重构 deadline&#xff0c;却要花大半天逐个排查&#xff1a;这失败是真的代码bug&#xff1f;还是测试用例本身不稳定&#xff1f;抑或是环境波动导致的误报&#xff1f;随着应用越来越…

北京InfoComm China二十周年:二十年成就亚洲极具影响力的专业视听行业盛会

&#xff08;北京&#xff0c;2026年1月22日&#xff09;二十年来&#xff0c;北京InfoComm China始终以专业、权威的平台定位&#xff0c;推动中国专业视听(Pro-AV)行业实现全球化发展与拓展国际版图。通过长期汇聚全球专业视听领域的制造商、解决方案提供商、IT系统集成商及各…

靠口碑翻身的作品!董子健导演首作,观众看完直呼走不出来!

《我的朋友安德烈》上映后&#xff0c;好评一波接一波&#xff0c;口碑持续发酵。导演董子健第一次拍电影&#xff0c;选择扎扎实实地回归到情感本身&#xff0c;用一个横跨多年的友情故事&#xff0c;精准地戳中了大家心里关于陪伴、理解和成长的那根弦&#xff0c;好多观众称…

【2026年-03期】Collaborative evolution between AI and humans

这是一幅关于 AI 与人类协作进化的逻辑全景图&#xff0c;它梳理了从 AI 技术迭代到人类能力重塑&#xff0c;再到二者形成新协作模式的完整逻辑链条。AI 演进与人类能力的底层逻辑AI 演进的双轮驱动AI 演化速度&#xff1a;从 GPT-3 → GPT-4 → GPT-5&#xff0c;模型能力不断…

PCA与K-means聚类结合的语音识别算法 - 教程

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

《P1939 矩阵加速(数列)》

题目描述已知一个数列 a&#xff0c;它满足&#xff1a;ax​{1ax−1​ax−3​​x∈{1,2,3}x≥4​求 a 数列的第 n 项对 1097 取余的值。输入格式第一行一个整数 T&#xff0c;表示询问个数。以下 T 行&#xff0c;每行一个正整数 n。输出格式每行输出一个非负整数表示答案。输入…

cdn哪家好

在数字化时代,网站、APP等在线业务的稳定性与安全性直接决定用户体验与企业收益。而SCDN(Secure Content Delivery Network,安全内容分发网络)作为融合“内容加速”与“安全防护”的关键基础设施,其专业性直接影响…

使用 Python 脚本自动化管理 Docker 容器:启动、修改密码、删除及系统资源监控

在日常开发和运维中&#xff0c;我们经常需要对 Docker 容器进行批量操作&#xff0c;比如启动容器、重置 root 密码、删除无用容器等。手动执行命令效率低且容易出错。本文将通过 Python 脚本实现以下功能&#xff1a; 启动指定名称的容器修改容器内 root 用户密码安全删除容…

从DEM到等高线:手撕矢量与栅格两种地形表达

深入解析等高线地形图的矢量与栅格两种生成原理,并通过 C++ 代码从零实现 DEM 到等高线的完整流程,揭示 GIS 地形表达的核心逻辑。本文节选自新书《GIS基础原理与技术实践》第6章。很多人会用 gdal_contour 一键生成…

智表ZCELL产品V3.5 版发布,新增行列选中操作等功能

智表ZCELL产品V3.5 版发布,新增行列选中操作等功能,欢迎大家体验使用。 本次版本(V3.5)更新内容如下:1.新增行列头光标自定义样式功能。 2.新增点击行列头选中整行整列功能。 3.新增滑动鼠标选中多行多列功能。 4…

自定义广播数据实现网络冲突自检中的问题

通过自定义协议广播发送数据实现网络冲突自检时,相同IP的设备无法互相收到彼此发送的广播数据 原因:网络协议栈过滤了来自同IP的广播数据(但可以收到自己发送的广播数据,原因待确认) 解决方法:通过原始套接字在协…

深入解析:量化血流动力学新时代:以数据驱动重构临床决策的精准与高效

深入解析:量化血流动力学新时代:以数据驱动重构临床决策的精准与高效pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: &…

整数、浮点数的内存中存储

引言两种数据在C语言中都十分的重要&#xff0c;很有必要都掌握清楚。一、整数以我们常见的数字进制来说&#xff0c;生活中普遍为十进制的数字&#xff0c;遇十进一&#xff0c;但是计算机由于其底层逻辑的影响&#xff0c;采取了二进制的方式存储数据。常用的编译器还会采取十…

AlexNet 迁移学习实战:CIFAR-10 图像分类实验 - 指南

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

element-ui table高度自适应实现分享

文章目录概要实现思路具体代码自适应封装mixins代码使用示例组件代码附加分享概要 在后台管理系统开发过程中&#xff0c;通常我们的布局都是如下图。这里面比较头疼的问题就是右侧这个table的高度自适应问题&#xff0c;接下来我将分享如何简单实现表格高度自适应。 实现思…

Linux Rootkit 手法解析(下):深入内核态的“隐形”攻防战

在上篇文章中&#xff0c;我们剖析了用户态Rootkit的种种手法&#xff0c;它们如同在操作系统的“外部广场”上进行伪装和欺骗。尽管手段多样&#xff0c;但其隐蔽性终究受限于用户空间的环境&#xff0c;细心的守护者总能通过多种方法发现端倪。 但此刻&#xff0c;我们将要推…