YOLO26全网最新创新点改进系列:受到哺乳动物大脑神经科学理论的启发,融合空间信息关注机制(SimAM)于YOLO26网络,在通道之间和空间位置之间建立更加准确的关联,助力YOLO有效涨点

YOLO26全网最新创新点改进系列:受到哺乳动物大脑神经科学理论的启发,融合空间信息关注机制(SimAM)于YOLO26网络,在通道之间和空间位置之间建立更加准确的关联,助力YOLO有效涨点

购买相关资料后畅享一对一答疑

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

SimAM: A Simple, Parameter-Free Attention Module for
Convolutional Neural Networks(提出原文戳这)

摘要

在本文中,我们提出了一个概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。 与现有的通道和空间注意力模块相比,我们的模块为层中的特征图推断 3D 注意力权重,而不向原始网络添加参数。 具体来说,我们基于一些著名的神经科学理论,提出优化能量函数来找出每个神经元的重要性。 我们进一步推导了能量函数的快速封闭式解决方案,并表明该解决方案可以用不到十行代码来实现。 该模块的另一个优点是,大多数算子是根据定义的能量函数的解来选择的,避免了过多的结构调整工作。 对各种视觉任务的定量评估表明,所提出的模块灵活有效,可以提高许多ConvNet的表示能力。

图 1. 不同网络获得的特征激活的可视化。 所有比较的网络均在一致的设置下在 ImageNet(Russakovsky 等人,2015)上进行训练。 这些特征是在验证集上提取的,并由 Grad-CAM 显示(Selvaraju 等人,2017)。 我们的 SimAM 帮助网络关注一些靠近下图所示图像标签的主要区域。

受人脑注意力机制的启发,
1我们提出了一个具有完整 3D 权重的注意力模块,并设计了一个能量函数来计算权重。
2 我们推导了能量函数的封闭式解,该解加速了重量计算并允许整个模块的轻量级形式。
3 我们将所提出的模块集成到一些众所周知的网络中,并在各种任务上对其进行评估。 我们的模块在准确性、模型大小和速度方面优于其他流行模块。

一 介绍

在大规模数据集(例如 ImageNet(Russakovsky 等人,2015))上训练的卷积神经网络(ConvNet)极大地提高了许多视觉任务的性能,例如图像分类(Krizhevsky 等人,2012;Simonyan 和 Zisserman) ,2014;He 等人,2016b;Szegedy 等人,2015;Sandler 等人,2018),物体检测(Ren 等人,2015;Liu 等人,2016) 等,2017)和视频理解(Feichtenhofer 等,2016;Wang 等,2018a)。 多项研究表明,更好的 ConvNet 结构可以显着提高各种问题的性能。 因此,构建强大的ConvNet是视觉研究中的一项重要任务。 现代 ConvNet 通常具有多个阶段,每个阶段由几个块组成。 这样的块由几个算子构建,如卷积、池化、激活或一些定制的元结构(在本文中称为模块)。 最近,许多工作不再像(Krizhevsky et al., 2012)那样设计整个架构,而是专注于构建高级模块以提高 ConvNet 的表示能力。 堆叠卷积 (Simonyan & Zisserman, 2014)、残差单元 (He et al., 2016b;a; Zagoruyko & Komodakis, 2016; Sandler et al., 2018) 和密集连接 (Huang et al., 2017; 2018) 是 其中最具代表性的,在现有架构中得到了广泛的应用。 然而,设计这些模块需要丰富的专业知识和大量的时间。 为了规避这一点,许多研究人员寻求一些搜索策略来自动构建架构(Zoph & Le,2016;Liu et al.,2018b;Dong & Yang,2019;Tan & Le,2019;Guo et al.,2020;Liu 等人,2019;Feichtenhofer,2020;Tan 等人,2020)。 除了设计复杂的模块之外,另一条研究重点是构建即插即用模块(Hu et al., 2018b; Woo et al., 2018; Cao et al., 2020; Lee et al., 2019; Wang et al., 2019) ., 2020; Yang et al., 2020)可以细化块内的卷积输出,并使整个网络能够学习更多信息特征。 例如,挤压和激励(SE)模块(Hu et al., 2018b)允许网络捕获任务相关特征(参见图 1 中的“山帐篷”)并抑制许多背景激活(参见中的“钢拱桥”)。 图1)。 该模块独立于网络架构,因此可以插入广泛的网络中,例如 VGG (Simonyan & Zisserman, 2014)、ResNets (He et al., 2016b) 和 ResNeXts (Xie et al., 2017) 。 最近,SE 模块作为 AutoML 的一个组件包含在内,以搜索更好的网络结构(Howard 等人,2019 年;Tan & Le,2019 年)。 然而,现有的注意力模块有两个问题。 首先,它们只能沿着通道或空间维度细化特征,限制了它们学习跨通道和空间变化的注意力权重的灵活性。 其次,它们的结构是由一系列复杂因素构建的,例如池化的选择。 我们通过提出一个基于完善的神经科学理论的模块来解决这些问题。 具体来说,为了使网络学习更具辨别力的神经元,我们建议直接从当前神经元推断 3D 权重(即考虑空间和通道维度),然后依次细化这些神经元。 为了有效地推断此类 3-D 权重,我们定义了一个由神经科学知识指导的能量函数,并得出了一个封闭式解决方案。 如图 1 所示,我们的模块帮助网络捕获许多与图像一致的有价值的线索

二 相关工作

在本节中,我们将简要讨论网络架构和即插即用注意力模块的代表性工作。 网络架构。 2012 年,发布了现代深度卷积网络 AlexNet(Krizhevsky et al., 2012),用于大规模图像分类。 它是一个简单的前馈结构,类似于 LeNet 中的设置(LeCun 等人,1998)。 之后,人们提出了多种方法来增强卷积网络的能力。 一些工作侧重于寻找最佳滤波器形状(Zeiler & Fergus,2014;Chatfield 等人,2014),而其他一些方法尝试设计更深的网络。 例如,VGG (Simonyan & Zisserman, 2014) 和 Inception Net (Szegedy et al., 2015) 使用堆叠卷积来降低梯度消失/爆炸的风险 (Bengio et al., 1994; Glorot & Bengio, 2010)。 接下来,ResNet(He et al., 2016b)和 Highway network(Srivastava et al., 2015)在每个块内添加从输入到输出的快捷连接。 快捷连接使 ConvNet 能够扩展到数百层。 他们的结果表明,增加网络深度可以大大提高卷积网络的表示能力。 除了网络深度之外,一些工作建议增加滤波器的数量(Zagoruyko & Komodakis,2016)以获得更宽的块,在每个块内添加更多连接(Huang et al.,2017),或者探索组/深度明智的卷积( 谢等人,2017;Chollet,2017)。 最近,一系列工作使用 AutoML (Zoph & Le, 2016; Liu et al., 2018b;a; Tan et al., 2019; Howard et al., 2019; Wu et al., 2019) 来保存手册 网络设计方面的努力。 与上述工作不同,我们的目标是设计一个轻量级的即插即用模块。 该模块可用于许多ConvNet,以进一步提高其在各种任务中的性能,而无需对架构进行大的改变。 注意和重新校准模块。 之前的作品还设计了一些细化特征图的计算模块。 它们通常被称为注意力模块或重新校准模块。 为了简单起见,我们在本文中将它们称为注意力模块。 事实上,人类注意力是最重要的选择机制之一,它优先考虑与任务相关的信息并减弱不相关的信号(Reynolds & Chelazzi,2004;Chun 等,2011)。 人类视觉处理中的注意力机制激发研究人员在卷积网络中设计类似的注意力模块。 一项代表性工作,挤压和激励(SE)(Hu et al., 2018b),通过以下方式学习不同通道的重要性:首先从全局视图中捕获一些上下文线索,然后使用两个完全连接的层来模拟通道之间的交互。 输出又用于在通道级别完善这些功能。 该模块通过其他方法进一步扩展,例如,使用卷积聚合器捕获全局上下文(Hu et al., 2018a)、学习与基于通道的卷积的交互(Wang et al., 2020)、添加空间注意力(Woo 等人,2018),合并远程依赖关系(Cao 等人,2020;Wang 等人,2018b),统一注意力和标准化过程(Li 等人,2019a),或利用该特征的风格线索( 李等人,2019)。 然而,所有这些方法都平等地对待一个通道中的所有神经元或一个空间位置上的所有神经元,因此它们无法有效地计算真实的 3-D 权重。 此外,他们计算注意力权重的算法大多是手工制作的,需要大量的计算能力。 相比之下,我们基于一些著名的神经科学理论来设计我们的模块,这更具可解释性。 值得注意的是,一些模块也受到神经科学理论的启发,例如自适应上下文驱动的卷积(Lin et al., 2020)和选择性内核的感受野调整(Li et al., 2019b)。 与它们不同的是,我们的模块基于从哺乳动物大脑观察到的空间抑制,并将重量生成公式化为能量函数。 导出了该能量函数的封闭式解。 由于快速的封闭式解决方案,我们的模块没有引入额外的参数,这是与以前的作品不同的引人注目的属性。

详细方法请家人们仔细研读原文一手资料!!!

三 结论

在本文中,我们受到哺乳动物大脑神经科学理论的启发,提出了一种新的注意力模块 - SimAM。 特别是,我们基于完善的空间抑制理论,设计了能量函数来实现该理论。 我们还得出了该函数的一个简单解决方案,其中该函数进一步用作特征图中每个神经元的注意力重要性。 我们的注意力模块是在这个能量函数的指导下实现的,避免了太多的启发式方法。 进行了大量的实验来验证所提出的 SimAM 的有效性和效率。 我们的结果表明,针对不同视觉任务,所提出的 SimAM 与各种网络中的其他注意力模块的性能相当。

四、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!

写在最后

学术因方向、个人实验和写作能力以及具体创新内容的不同而无法做到一通百通,所以本文作者即B站Up主:Ai学术叫叫兽
在所有B站资料中留下联系方式以便在科研之余为家人们答疑解惑,本up主获得过国奖,发表多篇SCI,擅长目标检测领域,拥有多项竞赛经历,拥有软件著作权,核心期刊等经历。因为经历过所以更懂小白的痛苦!因为经历过所以更具有指向性的指导!

祝所有科研工作者都能够在自己的领域上更上一层楼!!!

所有科研参考资料均可点击此链接,合适的才是最好的,希望我的能力配上你的努力刚好合适!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1199375.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python开发避坑宝典】:99%新手都忽略的类型判断细节

第一章:Python类型系统的核心认知 Python 的类型系统是动态且强类型的,这意味着变量在运行时才绑定类型,但类型之间的操作必须显式兼容。这种设计既提供了灵活性,又避免了隐式类型转换带来的潜在错误。 动态类型的本质 在 Python…

2026年无缝钢管推荐:能源与化工行业应用评测,涵盖高压耐蚀与长期安全痛点

研究概述 在工业制造、能源基建与重大工程项目中,无缝钢管作为关键的基础材料,其质量、性能与稳定供应直接关系到工程安全、运营效率与全生命周期成本。当前,采购决策者面临着一个复杂多元的市场环境,供应商数量众…

Emotion2Vec+ Large更新机制:版本升级与回滚实战指南

Emotion2Vec Large更新机制:版本升级与回滚实战指南 1. 引言:为什么需要掌握更新与回滚? 你有没有遇到过这种情况:系统突然报错,功能异常,日志显示模型加载失败?或者新版本上线后,…

装修厨柜哪个品牌好?2026年装修厨柜品牌推荐与排名,解决服务与性价比核心痛点

摘要 在家庭装修的核心决策中,厨房空间的规划与厨柜品牌的选择,正日益成为影响居住品质与长期使用体验的关键环节。当前,消费者不仅关注厨柜的收纳功能与外观设计,更对材料的环保安全、工艺的精细度以及品牌提供的…

Paraformer-large模型ID配置错误?常见问题排查手册

Paraformer-large模型ID配置错误?常见问题排查手册 1. 为什么模型ID配置错误会“静默失败” 你兴冲冲地部署好Paraformer-large语音识别镜像,打开Gradio界面上传音频,点击“开始转写”——结果界面上只显示“识别失败,请检查音频…

SpreadJS V19.0 新特性解密:报表导出黑科技,公式逻辑全保留

随着企业数字化转型的深入,报表不仅是数据的展示工具,更是业务逻辑的载体。在与众多开发者的交流中,我们发现了一个长期存在的痛点:“为什么我精心设计的报表导出到 Excel 后,动态的公式都变成了死板的数值&#xff1f…

2026年无缝钢管推荐:供应链趋势全面评测,涵盖能源与制造场景选型痛点

摘要 在工业制造与重大基础设施建设领域,无缝钢管作为关键的承压、输送与结构材料,其选型决策直接关系到项目的安全性、长期运行可靠性与全生命周期成本。当前,采购决策者正面临一个日益复杂的市场环境:一方面,下…

虚拟线程上线后Tomcat性能翻倍,你还在用传统线程?

第一章:虚拟线程上线后Tomcat性能翻倍,你还在用传统线程? Java 21正式引入了虚拟线程(Virtual Threads),作为Project Loom的核心成果,它彻底改变了高并发场景下的线程模型。与传统平台线程&…

Nacos进阶实战 05,Nacos 故障排查手册:常见问题与解决方案汇总

Nacos 作为阿里巴巴开源的一体化服务发现与配置管理平台,凭借易用性和对微服务生态的良好适配,已成为国内 Java 微服务架构的核心组件。然而在开发、测试及生产环境中,受配置、网络、集群架构等因素影响,难免出现各类故障。本文基…

说说玩具遥控车生产企业选择哪家好,分享优质厂家

随着家长对儿童玩具安全性、趣味性要求的提升,以及跨境电商、线下商超对供应链稳定性的关注,玩具遥控车厂家哪家好儿童玩具遥控车生产企业选择哪家好等问题逐渐成为采购方和消费者的高频疑问。本文围绕这三大核心问题…

2026年知名的防爆热电偶品牌哪家靠谱?实力厂家推荐

在工业温度测量领域,防爆热电偶因其在易燃易爆环境中的安全性和可靠性而成为关键设备。选择靠谱的防爆热电偶品牌需综合考虑企业资质、技术实力、产品性能、市场口碑及售后服务等因素。经过对行业20余家主流企业的深入…

性能狂飙!SpreadJS V19.0 GcExcel V9.0 重塑表格计算与数据处理新速度

在企业级表格应用场景中,性能瓶颈往往成为业务突破的“绊脚石”——百万级数据计算时的 UI 冻结、复杂公式批量复制的漫长等待、大规模报表导出的效率低下,这些问题不仅影响用户体验,更制约了数据驱动决策的响应速度。 如今,Spre…

儿童玩具遥控车制造商哪家好,汕头威盛达值得考虑吗?

本榜单依托全维度市场调研与真实行业口碑,深度筛选出五家标杆企业,为采购方(包括跨境电商、外贸商、国内商超及电商网店)提供客观依据,助力精准匹配适配的玩具遥控车供应链伙伴。榜单重点考量技术创新力、产品安全…

2026年无缝钢管推荐:长期合作稳定性排名,针对定制化与合规痛点分析

摘要 在工业制造与重大基础设施建设领域,无缝钢管作为关键的承压、输送与结构材料,其选型直接关系到项目的安全性、经济性与长期稳定运行。对于采购负责人、项目工程师及企业决策者而言,面对市场上数量众多、资质各…

总结2026年口碑好的玩具车厂家排名,威盛达玩具厂表现出色

在玩具产业蓬勃发展的今天,一个兼具趣味性、安全性与创新性的玩具车,是陪伴孩童快乐成长的重要伙伴。面对市场上众多玩具车生产厂,如何挑选口碑好的玩具车厂家、找到值得推荐的玩具车供应商?以下依据不同类型,为你…

零基础学AI微调:Unsloth让你少走90%弯路

零基础学AI微调:Unsloth让你少走90%弯路 1. 为什么你需要关注Unsloth? 你是不是也经历过这样的“炼丹”时刻: 显存爆了、训练太慢、代码跑不通、参数不会调……明明只是想微调一个模型,结果花了三天时间还在搭环境。 别急&…

隔音材料推荐制造商,哈尔滨市哈百盛隔音价格贵吗?

随着城市化进程加速,交通轰鸣、工业噪音、邻里干扰等问题日益凸显,选择合适的隔音材料成为建筑、工业、家居等领域解决噪声困扰的核心需求。但市场上隔音材料品牌鱼龙混杂,产品质量参差不齐,用户往往陷入选贵的怕踩…

Qwen_Image_Cute_Animal_For_Kids应用场景解析:教育+娱乐双落地

Qwen_Image_Cute_Animal_For_Kids应用场景解析:教育娱乐双落地 在当今数字内容快速发展的背景下,AI生成技术正逐步渗透到儿童教育与娱乐领域。Cute_Animal_For_Kids_Qwen_Image 作为一款专为儿童场景设计的图像生成工具,凭借其简洁的操作流程…

国产差示扫描量热仪供应商优选指南:航天级品质+全周期服务太能打!

在材料科学、化工、新能源、医药等领域,差示扫描量热仪(DSC)作为核心热分析设备,其精准度、稳定性直接决定研发成果与产品质量管控水平。面对当前市场“进口品牌价高售后滞后、小厂商技术薄弱”的痛点,北京航天伟…

【IEEE出版 | EI检索】第五届电子技术与人工智能国际学术会议(ETAI 2026)

第五届电子技术与人工智能国际学术会议(ETAI 2026)将拟定于2026年3月6-8日于中国-哈尔滨隆重举行。【哈尔滨信息工程学院主办,百人规模参会,会议影响力广泛 |多位IEEE Fellow、国家高层次领军人才参会报告 | 往届平…