【第3章>第1节】基于深度学习的目标检测概述

目录

1.深度学习目标检测的发展历程

1.1 第一阶段:候选区域+深度学习——R-CNN/Fast R-CNN/Faster R-CNN

1.2 第二阶段:端到端单阶段检测——YOLO/SSD

1.3 第三阶段:特征融合与结构优化——FPN/RetinaNet/Mask R-CNN

1.4 第四阶段:Transformer与视觉大模型(DETR、ViT检测)

2.深度学习网络常用模型结构

3.目标检测的应用场景

3.1 自动驾驶(车辆、行人、交通标志检测)

3.2 安防监控(异常行为检测)

3.3 机器人视觉(抓取、导航)

3.4 医疗影像(病灶检测)

3.5 工业质检(缺陷检测)

3.6 新零售(货架商品识别)

4.未来发展趋势


欢迎订阅FPGA/MATLAB/Simulink系列教程

《★教程1:matlab入门100例》

《★教程2:fpga入门100例》

《★教程3:simulink入门60例》

《★教程4:FPGA/MATLAB/Simulink联合开发入门与进阶X例》

《★专题3:人工智能基础应用研究》

图像目标检测是计算机视觉领域的核心任务之一,其目标是在图像中定位目标的位置并识别其类别。传统目标检测方法依赖手工设计的特征(如SIFT、HOG)和滑动窗口策略,精度与速度难以兼顾。2012年AlexNet在ImageNet上取得突破性进展后,深度学习开始全面推动目标检测技术的发展。此后十年间,目标检测算法经历了从“候选区域+深度学习”到“端到端单阶段检测”,再到 “Transformer与多尺度融合”的快速演进格局。

1.深度学习目标检测的发展历程

1.1 第一阶段:候选区域+深度学习——R-CNN/Fast R-CNN/Faster R-CNN

2014年,Girshick等人提出R-CNN,首次将深度学习应用于目标检测,开创了“候选区域提取+卷积特征提取+分类回归”的三段式框架。R-CNN基本构架如下:

R-CNN使用选择性搜索(Selective Search)生成约2000个候选区域,每个候选区域通过CNN提取特征;使用SVM进行分类,并通过线性回归修正边界框。R-CNN证明了深度学习特征在目标检测中的有效性,显著提升了PASCAL VOC数据集上的检测精度。但是R-CNN训练过程分多阶段,步骤繁琐。候选区域数量多,速度极慢(一张图需几十秒)。

随后出现了Fast R-CNN(2015)和Faster R-CNN(2015),逐步解决了速度与训练流程的问题。

Fast R-CNN改进:

整张图共享卷积特征,避免重复计算。

使用ROI Pooling提取固定尺寸特征。

分类与回归统一到一个网络中,端到端训练。

Faster R-CNN改进:

提出RPN(Region Proposal Network),实现候选区域的端到端生成。

将检测速度提升到实时附近(GPU上5fps)。

Faster R-CNN成为两阶段检测的经典框架,后续大量工作均基于此改进。

1.2 第二阶段:端到端单阶段检测——YOLO/SSD

虽然Faster R-CNN精度高,但仍无法满足实时应用需求。2016年,Redmon提出YOLO(You Only Look Once),开创了单阶段检测的先河。自2016年诞生以来,经历了多次重大迭代,从追求极致速度的初代模型,到如今在速度与精度间实现卓越平衡的工业级方案,已成为全球应用最广的目标检测框架之一。YOLO基本构架如下:

YOLO核心思想:

将图像划分为S×S网格。

每个网格直接预测多个边界框及其类别概率。

整个检测过程为单阶段,速度极快(45fps)。

SSD(Single Shot MultiBox Detector)改进:

在多尺度特征图上进行检测,提升小目标性能。

结合锚框机制,提高定位精度。

该方法在速度上远超两阶段方法,推动了目标检测在实时场景(自动驾驶、视频监控)中的应用。此后,研究者不断改进YOLO系列,如YOLOv2引入批量归一化、锚框机制;YOLOv3使用更深的网络和多尺度预测;YOLOv4、YOLOv5、YOLOv7等进一步提升了精度和速度,成为工业界最常用的实时检测算法。

1.3 第三阶段:特征融合与结构优化——FPN/RetinaNet/Mask R-CNN

随着模型深度增加,特征金字塔结构成为提升多尺度检测性能的关键。

FPN(Feature Pyramid Network):

构建自上而下的特征金字塔,融合多尺度特征。

显著提升小目标检测精度,成为现代检测器的标配。

RetinaNet:

提出Focal Loss,解决单阶段检测中正负样本极度不平衡的问题。

在保持速度的同时,精度首次超过两阶段方法。

Mask R-CNN:

在Faster R-CNN基础上添加掩码分支,实现实例分割。

展示了检测与分割的统一框架。

这一阶段的技术主要围绕特征融合、损失函数设计和网络结构优化展开,使目标检测精度达到新高度。

1.4 第四阶段:Transformer与视觉大模型(DETR、ViT检测)

2020年,Facebook提出DETR(Detection Transformer),首次将Transformer引入目标检测,实现了“无锚框、无Proposal”的端到端检测。

DETR核心思想:

使用Transformer encoder-decoder结构直接预测目标集合。

通过二分图匹配(Hungarian Matching)解决目标分配问题。

无需锚框,简化了检测流程。

虽然DETR在COCO上表现优异,但训练时间长、小目标性能一般。后续出现了Deformable DETR、DINO 等改进版本,大幅提升了速度与精度。

同时,基于ViT(Vision Transformer)的检测模型(如ViTDet、Swin Transformer)也逐渐成为主流,展示了Transformer在视觉任务中的巨大潜力。

2.深度学习网络常用模型结构

深度学习网络根据任务需求选择合适的模型结构,包括骨干网络、 Neck结构和检测头。

骨干网络骨干网络负责提取图像特征,常见的有:

AlexNet

VGGNet

ResNet

ResNeXt

MobileNet

EfficientNet

Swin

Transformer

骨干网络的发展趋势是: 更深的网络结构 更强的特征表达能力 更高的计算效率。

Neck结构Neck结构用于多尺度特征融合,常用的有:

FPN(特征金字塔)

PANet(自底向上增强)

NAS-FPN(神经架构搜索)

BiFPN(双向特征金字塔)

Neck in YOLOv4/YOLOv5(CSP结构)

颈部结构的目标是: 融合多尺度特征 提升小目标与大目标的检测能力,增强特征表达,显著提升了小目标检测性能。

检测头(Head)负责最终的分类与回归,分为两类:

两阶段检测头(如Faster R-CNN)

RPN头:生成候选区域

ROI Head:对候选区域进行分类与回归

单阶段检测头(如YOLO、SSD)

分类分支:预测类别概率

回归分支:预测边界框坐标

锚框机制:预设不同尺度和比例的锚框

近年来出现了无锚框检测头(如DETR),直接预测目标集合。

3.目标检测的应用场景

3.1 自动驾驶(车辆、行人、交通标志检测)

自动驾驶系统是目标检测技术最具代表性的应用场景之一。在复杂多变的道路环境中,车辆需要实时识别其他车辆、行人、骑行者以及交通标志、交通灯等关键元素。通过摄像头、激光雷达等多传感器融合,目标检测算法能够提供目标的位置、类别和运动状态,为决策与控制模块提供可靠输入,从而实现车道保持、自动跟车、紧急制动等功能。高精度的检测能力直接关系到自动驾驶的安全性,因此该领域对算法的鲁棒性、实时性和小目标检测能力要求极高。

3.2安防监控(异常行为检测)

在安防监控领域,目标检测不仅用于识别人员和车辆,还被广泛应用于异常行为检测。例如,在机场、车站、商场等公共场所,系统可以通过检测奔跑、聚集、翻越围栏等异常行为及时发出警报。此外,结合视频分析和多目标跟踪技术,安防系统还能实现人员轨迹分析、可疑人员识别以及重点区域监控,大幅提升安防效率和智能化水平。

3.3机器人视觉(抓取、导航)

机器人视觉是机器人能够与环境交互的基础,而目标检测在其中发挥着关键作用。在抓取任务中,机器人需要准确识别目标物体的位置和姿态,以便控制机械臂进行精确操作。在导航任务中,机器人通过检测障碍物、路标以及行人来规划安全路径,实现自主移动。无论是工业机器人还是服务机器人,目标检测都使其具备了更高的感知能力和环境适应能力。

3.4医疗影像(病灶检测)

医疗影像分析是目标检测在医疗领域的重要应用方向,尤其在病灶检测方面表现突出。例如,在肺结节检测、眼底病变识别、肿瘤定位等任务中,算法能够自动在CT、MRI、X光等影像中标记可疑区域,帮助医生提高诊断效率和准确性。目标检测不仅能减少漏诊和误诊,还能辅助医生进行定量分析,为个性化治疗提供依据。

3.5工业质检(缺陷检测)

在工业质检场景中,目标检测被用于产品表面缺陷检测、装配错误识别以及生产过程监控。传统人工质检效率低且容易受主观因素影响,而基于深度学习的检测算法能够在生产线上实时识别划痕、裂纹、缺失部件等缺陷,显著提升检测精度和速度。尤其在电子制造、汽车制造、纺织等行业,目标检测技术正在成为质量控制的重要工具。

3.6新零售(货架商品识别)

新零售行业也在广泛使用目标检测技术,特别是在货架商品识别方面。通过摄像头采集货架图像,系统可以自动识别商品种类、数量和摆放位置,实现库存管理、缺货检测和智能补货。此外,目标检测还能用于顾客行为分析、智能导购和无人零售结算,帮助商家提升运营效率和用户体验。

4.未来发展趋势

Anchor-free方法:减少手工设计,提高泛化能力

更强的特征融合:如Transformer-based结构(DETR)

端侧实时检测:模型更小、更快(YOLOv8-nano)

多模态目标检测:结合图像、点云、文本

自监督预训练:减少对标注数据的依赖

DETR(Detection Transformer)使用Transformer直接预测一组目标框,无需Anchor,是目标检测的重要方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1197057.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

颠覆传统:RX-Explorer如何重新定义Windows文件管理体验

颠覆传统:RX-Explorer如何重新定义Windows文件管理体验 【免费下载链接】RX-Explorer 一款优雅的UWP文件管理器 | An elegant UWP Explorer 项目地址: https://gitcode.com/gh_mirrors/rx/RX-Explorer 还在为Windows资源管理器的功能限制而烦恼吗&#xff1f…

终极黑苹果配置简化指南:OpCore Simplify三分钟生成完美EFI

终极黑苹果配置简化指南:OpCore Simplify三分钟生成完美EFI 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 还在为复杂的黑苹果配置步骤而…

Bongo Cat虚拟助手选择指南:打造你的专属桌面伴侣最佳方案

Bongo Cat虚拟助手选择指南:打造你的专属桌面伴侣最佳方案 【免费下载链接】BongoCat 让呆萌可爱的 Bongo Cat 陪伴你的键盘敲击与鼠标操作,每一次输入都充满趣味与活力! 项目地址: https://gitcode.com/gh_mirrors/bong/BongoCat 你是…

猫抓Cat-Catch:你的网页媒体资源嗅探专家

猫抓Cat-Catch:你的网页媒体资源嗅探专家 【免费下载链接】cat-catch 猫抓 chrome资源嗅探扩展 项目地址: https://gitcode.com/GitHub_Trending/ca/cat-catch 你是否曾经在浏览网页时,遇到喜欢的视频却无法下载?或者在观看在线课程时…

【第3章>第2节】基于深度学习的目标检测学习路线综述

目录 1.常见图像目标检测网络模型 2.基于深度学习的图像目标检测学习路线 欢迎订阅FPGA/MATLAB/Simulink系列教程 《★教程1:matlab入门100例》 《★教程2:fpga入门100例》 《★教程3:simulink入门60例》 《★教程4:FPGA/MATLAB/Simulink联合开发入门与进阶X例》 《★专题3:人…

BiliTools智能视频解析:高效提取B站精华内容的全新方案

BiliTools智能视频解析:高效提取B站精华内容的全新方案 【免费下载链接】BiliTools A cross-platform bilibili toolbox. 跨平台哔哩哔哩工具箱,支持视频、音乐、番剧、课程下载……持续更新 项目地址: https://gitcode.com/GitHub_Trending/bilit/Bil…

如何快速配置OpenCore EFI:新手完整操作教程

如何快速配置OpenCore EFI:新手完整操作教程 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 还在为复杂的黑苹果配置流程而烦恼吗&#xf…

MDX-M3-Viewer:浏览器中的魔兽争霸与星际争霸模型可视化神器

MDX-M3-Viewer:浏览器中的魔兽争霸与星际争霸模型可视化神器 【免费下载链接】mdx-m3-viewer A WebGL viewer for MDX and M3 files used by the games Warcraft 3 and Starcraft 2 respectively. 项目地址: https://gitcode.com/gh_mirrors/md/mdx-m3-viewer …

开源大模型2025落地指南:Qwen3-4B-Instruct行业应用分析

开源大模型2025落地指南:Qwen3-4B-Instruct行业应用分析 1. 这不是又一个“能跑就行”的模型,而是真正能用起来的文本助手 你有没有遇到过这样的情况: 花半天时间搭好一个开源大模型,结果一问“帮我写一封客户投诉回复邮件”&am…

Armbian开机自启脚本实战:从编写到启用完整流程

Armbian开机自启脚本实战:从编写到启用完整流程 1. 引言:为什么需要开机自启脚本? 你有没有遇到过这样的情况:每次重启Armbian设备后,都要手动运行一段命令来点亮LED、配置GPIO引脚,或者启动某个后台服务…

OpCore-Simplify:智能配置工具让黑苹果系统部署变得简单

OpCore-Simplify:智能配置工具让黑苹果系统部署变得简单 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify OpCore-Simplify是一款专门为简化…

【MySQL 全量实战手册】从基础到进阶,覆盖所有 SQL 核心操作(附避坑指南 + 实战案例)

目录 前言 一、基础铺垫:测试环境搭建 二、核心分类:SQL 四大类语句全解析 (一)DDL:数据定义语言(表 / 库结构操作) 避坑提示: (二)DML:数据…

精通时间序列数据可视化:PlotJuggler实战指南

精通时间序列数据可视化:PlotJuggler实战指南 【免费下载链接】PlotJuggler The Time Series Visualization Tool that you deserve. 项目地址: https://gitcode.com/gh_mirrors/pl/PlotJuggler 在当今数据驱动的时代,时间序列数据可视化已成为工…

macOS部署革命:OpenCore智能配置终极解决方案

macOS部署革命:OpenCore智能配置终极解决方案 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify OpCore-Simplify是一款革命性的智能配置工具…

Windows 11系统优化终极指南:Win11Debloat完全使用教程

Windows 11系统优化终极指南:Win11Debloat完全使用教程 【免费下载链接】Win11Debloat 一个简单的PowerShell脚本,用于从Windows中移除预装的无用软件,禁用遥测,从Windows搜索中移除Bing,以及执行各种其他更改以简化和…

OpCore Simplify:5步自动化构建完美Hackintosh EFI配置

OpCore Simplify:5步自动化构建完美Hackintosh EFI配置 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 在传统Hackintosh安装过程中&#…

性能优化:Sambert语音合成速度提升技巧大公开

性能优化:Sambert语音合成速度提升技巧大公开 1. 引言:为什么语音合成速度至关重要 在实际应用中,语音合成(TTS)的响应速度直接影响用户体验。无论是智能客服、有声读物生成,还是虚拟主播实时播报&#x…

kotlin 延迟属性

直接测试下:val myZuoYouMing: String by lazy {println("万里长城永不倒")println("千里黄河水滔滔")"江山秀丽叠彩峰岭""问我国家哪像染病" }fun main() {val zym myZuoYouMingprintln(zym)println("...........&q…

工作笔记 - Liam

麒麟信安探针关闭验时: echo "NO CHECK-SIG" > /etc/gd_advisor/.check cat /etc/gd_advisor/.check 南瑞继保探针 切换为root,进入目录/usr/local/sagent-3000-isg; 修改白名单、重启之间都要停止进程;…

Hackintosh配置新纪元:OpCore-Simplify如何让复杂变简单

Hackintosh配置新纪元:OpCore-Simplify如何让复杂变简单 【免费下载链接】OpCore-Simplify A tool designed to simplify the creation of OpenCore EFI 项目地址: https://gitcode.com/GitHub_Trending/op/OpCore-Simplify 想要在普通PC上体验macOS的魅力吗…