基于深度学习的油气知识图谱平台

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

✅成品或者定制,扫描文章底部微信二维码。


(1) 油气领域实体关系数据集构建与预处理方法

知识图谱作为一种结构化的知识表示方式,能够有效组织和管理复杂的领域知识,为油气行业的智能化发展提供重要支撑。然而,构建高质量的油气知识图谱首先需要解决数据来源和标注问题。目前,油气领域缺乏公开可用的实体关系识别数据集,这成为制约相关研究的瓶颈。为解决这一问题,本研究设计了一套完整的数据集构建方案。在数据获取阶段,本研究采用网络爬虫技术从学术文献数据库中自动抓取油气领域相关文献,包括期刊论文、学位论文、会议论文等多种类型。这些文献涵盖了油气勘探、开采、加工、运输等多个环节的专业知识,能够为知识图谱构建提供丰富的语料基础。获取原始文献后,需要进行系统性的数据预处理工作。预处理流程包括文本清洗、格式统一、分句分词等多个步骤。文本清洗阶段去除文献中的乱码、特殊符号、重复内容等噪声信息。格式统一阶段将不同来源的文献转换为统一的文本格式,便于后续处理。分句分词阶段使用自然语言处理工具对文本进行切分,为实体标注做准备。在数据标注阶段,本研究采用序列标注的策略对处理后的文本进行人工标注。标注人员需要识别文本中的油气领域实体,包括油田名称、地质构造、开采设备、工艺流程等多种类型,并标注实体之间的语义关系。为保证标注质量,制定了详细的标注规范,并采用多人交叉标注的方式减少标注偏差。最终构建的数据集包含了大量高质量的实体关系标注样本,为后续深度学习模型的训练提供了可靠的数据基础。

(2) 基于深度学习的命名实体识别与关系抽取模型

命名实体识别和关系抽取是知识图谱构建的核心环节,其性能直接决定了知识图谱的质量。针对油气领域文本的特点,本研究分别设计了命名实体识别模型和关系抽取模型。在命名实体识别任务中,本研究提出了一种结合预训练语言模型和序列标注网络的深度学习模型。该模型首先利用预训练语言模型对输入文本进行编码,获取包含丰富语义信息的上下文表示。预训练语言模型通过在大规模语料上进行预训练,学习到了通用的语言知识,能够有效捕捉文本中的语义特征。在预训练表示的基础上,模型采用双向长短期记忆网络进一步提取序列特征。双向结构能够同时利用前向和后向的上下文信息,增强对实体边界的判断能力。最后,采用条件随机场层对标注序列进行全局优化,确保输出的标签序列满足合理的转移约束。通过对比实验验证了该模型在油气领域实体识别任务中的准确性和有效性。在关系抽取任务中,本研究提出了一种基于图神经网络的组合模型。该模型同样利用预训练语言模型获取文本的语义表示,在此基础上引入图神经网络来建模实体之间的交互关系。图结构能够自然地表示实体和关系的拓扑结构,图神经网络通过消息传递机制聚合邻居节点的信息,增强实体表示的关系感知能力。模型最终输出实体关系三元组,即主体实体、关系类型和客体实体的组合。实验结果表明,该模型能够准确抽取油气领域文本中的实体关系,为知识图谱的构建提供高质量的三元组数据。

(3) 油气知识图谱构建与可视化平台开发

基于实体识别和关系抽取模型获得的三元组数据,本研究进一步完成了油气领域知识图谱的构建工作。知识图谱采用图数据库进行存储和管理,图数据库以节点和边的形式存储数据,天然适合表示实体和关系构成的网络结构。在数据导入阶段,本研究设计了批量导入程序,将抽取得到的大量三元组数据高效地导入图数据库中。导入过程包括实体去重、关系合并、数据校验等环节,确保知识图谱的一致性和完整性。实体去重通过计算实体名称的相似度来识别指向同一概念的不同表述,将它们合并为统一的节点。关系合并则处理从不同来源抽取的重复关系,避免图谱中出现冗余边。构建完成的油气知识图谱包含了大量的油气领域知识,涵盖地质、工程、设备、工艺等多个维度。


如有问题,可以直接沟通

👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1196747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于贝叶斯深度学习的雷达有源干扰识别方法

✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。 ✅成品或者定制,扫描文章底部微信二维码。 (1) 雷达干扰信号建模与数据集制备方法 雷达系统在复杂电磁环境中面临着各种有源干…

同一篇论文,维普AI率67%→9%,我是怎么做到的

维普AIGC检测高?6款工具帮你降到合格线 TL;DR:维普AIGC检测算法和知网不同,很多知网能过的工具在维普可能过不了。实测对维普效果最好的是嘎嘎降AI(67%→9%),其次是比话降AI(60%→12%&#xff0…

维普AIGC检测怎么降?照这个流程来

维普AIGC检测高?6款工具帮你降到合格线 TL;DR:维普AIGC检测算法和知网不同,很多知网能过的工具在维普可能过不了。实测对维普效果最好的是嘎嘎降AI(67%→9%),其次是比话降AI(60%→12%&#xff0…

基于深度学习的人机协同产品造型仿生设计

✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅成品或者定制,扫描文章底部微信二维码。(1) 基于深度生成模型的产品造型仿生融合方法仿生设计是产品创新的重要途径&#xff…

基于STM32智能门禁锁系统设计与实现

基于STM32智能门禁锁系统设计与实现摘要随着物联网技术的快速发展和智能家居需求的日益增长,传统门锁已难以满足现代生活对安全性与便捷性的要求。本文设计了一种基于STM32F103C8T6单片机的智能门禁锁系统,集成指纹识别、密码输入、RFID卡感应三种解锁方…

2026年马年零食大礼盒Top3深度评:从年味、性价比到健康,这3款闭眼入不踩雷

2026年马年零食大礼盒Top3深度评:从年味、性价比到健康,这3款闭眼入不踩雷离马年春节还有俩月,朋友圈已经开始刷“礼盒选疯了”——有人怕买贵了肉疼,有人怕选差了没面子,还有人愁“老人嫌甜、孩子怕腻、自己要健…

2026.1.19总结

今天继续了解nlp的理论部分, 模块二:传统方法篇 - 从规则到统计 第一部分:语言处理流水线 想象你要教计算机读文章,首先要教它识字断句。 文本预处理是清洗和准备数据。包括:去掉HTML标签、特殊符号;分词——把句…

基于深度学习建立棉花花药开裂状态识别系统

✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。 ✅成品或者定制,扫描文章底部微信二维码。 (1) 棉花花药图像数据集构建与单阶段检测模型设计 棉花花药开裂状态的准确识别对于…

维普AI率爆表?别急,这6个方法亲测有效

维普AIGC检测高?6款工具帮你降到合格线 TL;DR:维普AIGC检测算法和知网不同,很多知网能过的工具在维普可能过不了。实测对维普效果最好的是嘎嘎降AI(67%→9%),其次是比话降AI(60%→12%&#xff0…

2026医学教育白皮书发布:护考软件红黑榜揭晓,易小考高居榜首!

来源:搜狐教育 | 2026-01-21 随着我国医疗卫生行业人才准入门槛的持续提升,护士资格考试(护资)与护师考试的难度逐年攀升。面对“去应试化”的改革浪潮,如何选择一款靠谱的备考软件,成为了百万考生关注的焦点。 …

2026.1.18总结

今天看了看关于nlp的相关内容,有些深奥看不懂 第一部分:数学与统计基础 这是NLP大厦的地基。你需要掌握: 线性代数是理解神经网络如何工作的钥匙。想象一下,每个词都被表示成一个数字向量,句子就是这些向量的组合…

CSS 新特性总结(附:var() 函数详解)

本文全面总结了CSS最新特性,涵盖选择器、布局、变量、动画等多个方面。 重点包括: 1)CSS Selectors Level 4新增的关系选择器(:has)、逻辑组合选择器(:is/:where)等; 2)布局增强如Flexbox的gap属性、Grid子网格和Mason…

计算机Java毕设实战-基于Java的隧道云视频监控管理信息平台设计与实现【完整源码+LW+部署说明+演示视频,全bao一条龙等】

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

Flow-Planner疑问汇总

一、Flow-Planner中ODE求解器使用的Midpoint和两倍步数的Euler法有啥区别? #位置在torchdiffeq/torchdiffeq/_impl/fixed_grid.py class Euler(FixedGridODESolver):order 1def _step_func(self, func, t0, dt, t1, y0):f0 func(t0, y0, perturbPerturb.NEXT if s…

STM32智能大棚浇花花盆

目录 STM32智能大棚浇花花盆概述核心功能硬件组成软件实现应用场景 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式! STM32智能大棚浇花花盆概述 STM32智能大棚浇花花盆是一种基于STM32微控制器的自动化种植系统,通过传感器…

Java毕设项目:基于springboot的隧道云视频监控管理信息平台设计与实现(源码+文档,讲解、调试运行,定制等)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

知光项目用户资料模块

前言: 该文档只作为本人学习过程的记录,若还需要更详细的项目文档可以点击下方链接进行购买 文档地址 同时该项目已经在git上面开源,可以在购买前去看一下该项目。 项目后端的git地址:知光git后端地址 项目前端的git地址: 知…

MySQL:更新语句执行流程详解

其实更新语句update和查询语句“大同小异”,但关键的几个差异点,恰恰是面试常考、工作中容易踩坑的地方,尤其是redo log、binlog和两阶段提交,看完这篇彻底搞懂! 先给大家一个核心结论:MySQL的update语句&a…

STM32心率血氧手环(可报警)

目录硬件设计传感器技术软件算法应用场景开发资源源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!硬件设计 STM32心率血氧手环通常基于STM32微控制器(如STM32F4或STM32L4系列),搭配光学传感器模块&am…

[langchain 内部数据传递层级]

@dynamic_prompt def dynamic_system_prompt(request: ModelRequest) -> str:user_name = request.runtime.context.user_name system_prompt = f"You are a helpful assistant. Address the user as {user_n…