Qwen3-1.7B从零开始教程:Jupyter+LangChain完整调用流程

Qwen3-1.7B从零开始教程:Jupyter+LangChain完整调用流程

Qwen3-1.7B是阿里巴巴通义千问系列中的一款轻量级大语言模型,适合在资源有限的环境中进行快速推理和本地部署。它在保持较高语言理解与生成能力的同时,兼顾了响应速度和硬件适配性,非常适合用于教学、原型开发和中小规模应用集成。

Qwen3(千问3)是阿里巴巴集团于2025年4月29日开源的新一代通义千问大语言模型系列,涵盖6款密集模型和2款混合专家(MoE)架构模型,参数量从0.6B至235B。该系列模型全面升级了语言理解、逻辑推理、代码生成和多语言支持能力,其中Qwen3-1.7B作为中等规模的代表,在性能与效率之间实现了良好平衡,特别适用于边缘设备或对延迟敏感的应用场景。

1. 准备工作:启动镜像并进入Jupyter环境

在开始调用Qwen3-1.7B之前,首先需要确保你已经获取了一个包含预置模型服务的GPU镜像环境。这类镜像通常由平台如CSDN星图提供,集成了模型运行所需的所有依赖项和服务。

1.1 镜像部署与服务启动

登录你的AI开发平台账户,选择带有Qwen3系列模型支持的GPU镜像进行实例创建。完成部署后,系统会自动拉取镜像并启动后台服务。等待状态显示为“运行中”后,点击“连接”按钮,进入Web终端界面。

此时,模型服务已在本地8000端口启动,可通过curl命令测试连通性:

curl http://localhost:8000/v1/models

如果返回包含Qwen3-1.7B的信息,则说明模型服务正常运行。

1.2 打开Jupyter Notebook

在同一页面中,找到“打开Jupyter”链接并点击,即可进入交互式编程环境。这是我们将用来编写LangChain调用代码的主要工具。

建议新建一个Python笔记本文件,命名为qwen3_langchain_demo.ipynb,以便后续操作清晰可追溯。

2. 使用LangChain调用Qwen3-1.7B模型

LangChain是一个强大的框架,能够简化大模型的集成流程,支持多种模型接口统一调用。我们可以通过langchain_openai模块来对接Qwen3-1.7B,尽管它并非OpenAI官方模型,但由于其兼容OpenAI API协议,因此可以直接使用该适配器。

2.1 安装必要依赖(如未预装)

虽然大多数镜像已预装LangChain相关库,但若提示缺少模块,可在Jupyter的代码单元格中执行以下安装命令:

!pip install langchain_openai --quiet

安装完成后重启内核以确保导入成功。

2.2 初始化ChatModel实例

接下来,我们将配置ChatOpenAI类,指向本地运行的Qwen3-1.7B服务地址,并设置关键参数。

from langchain_openai import ChatOpenAI import os chat_model = ChatOpenAI( model="Qwen3-1.7B", temperature=0.5, base_url="https://gpu-pod69523bb78b8ef44ff14daa57-8000.web.gpu.csdn.net/v1", # 当前jupyter的地址替换,注意端口号为8000 api_key="EMPTY", extra_body={ "enable_thinking": True, "return_reasoning": True, }, streaming=True, )
参数说明:
  • model: 指定调用的模型名称,必须与服务端注册的一致。
  • temperature: 控制输出随机性,0.5表示适度创造性,数值越低越确定。
  • base_url: 这是你当前Jupyter环境对外暴露的服务地址,务必确认端口为8000且HTTPS可用。
  • api_key="EMPTY": 因为本地服务通常不设密钥验证,此处设为空字符串即可。
  • extra_body: 扩展字段,启用“思维链”功能(Thinking Process),让模型返回中间推理步骤。
  • streaming=True: 开启流式输出,实现逐字打印效果,提升交互体验。

提示:如果你在不同平台上运行,请根据实际URL调整base_url字段。可通过镜像管理界面查看确切访问地址。

2.3 发起首次对话请求

现在我们可以尝试让模型回答一个简单问题,验证调用是否成功。

response = chat_model.invoke("你是谁?") print(response.content)

执行上述代码后,你应该能看到类似如下输出:

我是Qwen3-1.7B,阿里巴巴通义实验室推出的超大规模语言模型,我能够回答问题、创作文字、表达观点等。

同时,由于设置了enable_thinking=True,部分实现还会返回推理过程(具体取决于服务端支持情况),帮助你理解模型是如何得出结论的。

2.4 流式输出体验优化

为了更直观地感受模型的实时响应能力,可以结合回调函数实现动态打印效果。

from langchain_core.callbacks import StreamingStdOutCallbackHandler chat_model_with_streaming = ChatOpenAI( model="Qwen3-1.7B", temperature=0.5, base_url="https://gpu-pod69523bb78b8ef44ff14daa57-8000.web.gpu.csdn.net/v1", api_key="EMPTY", callbacks=[StreamingStdOutCallbackHandler()], streaming=True, ) chat_model_with_streaming.invoke("请用三句话介绍你自己。")

运行这段代码时,你会看到文字像打字机一样逐个出现,带来更强的互动感。

3. 常见问题与调试技巧

在实际使用过程中,可能会遇到一些常见问题。以下是几种典型情况及其解决方案。

3.1 连接失败或超时

现象:调用时报错ConnectionErrorHTTP 502 Bad Gateway

原因分析

  • base_url填写错误,尤其是端口号或子域名拼写有误。
  • 模型服务尚未完全启动,仍在加载权重。
  • 网络策略限制外部访问。

解决方法

  • 检查镜像控制台日志,确认服务监听在8000端口。
  • 使用pingcurl测试基础连通性。
  • 确保使用的URL是公网可访问版本,而非容器内部地址。

3.2 返回内容为空或异常

现象:输出为空字符串,或包含乱码、JSON解析错误。

可能原因

  • api_key格式不符合要求(某些服务要求非空字符串)。
  • extra_body中的字段不被支持,导致服务拒绝处理。
  • 模型负载过高,响应中断。

应对策略

  • 尝试将api_key改为任意非空值(如"sk-"开头)。
  • 移除extra_body字段进行最小化测试。
  • 降低并发请求频率,避免资源争抢。

3.3 如何查看模型支持的功能列表

你可以通过访问以下URL直接查询服务元信息:

https://gpu-pod69523bb78b8ef44ff14daa57-8000.web.gpu.csdn.net/v1/models

返回的JSON数据中会列出所有可用模型及其特性,例如是否支持函数调用、最大上下文长度、token限制等。

4. 进阶使用建议

一旦基础调用成功,你可以在此基础上构建更复杂的应用逻辑。

4.1 结合PromptTemplate提升输入质量

使用模板可以标准化输入格式,提高模型表现一致性。

from langchain.prompts import PromptTemplate template = PromptTemplate.from_template("你是一个专业助手,请用简洁语言回答:{question}") prompt = template.format(question="如何学习人工智能?") response = chat_model.invoke(prompt) print(response.content)

4.2 集成记忆机制实现多轮对话

借助ConversationBufferMemory,可以让模型记住历史对话内容。

from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain memory = ConversationBufferMemory() chain = LLMChain( llm=chat_model, prompt=PromptTemplate.from_template("{history}\n用户:{input}"), memory=memory ) chain.invoke({"input": "你好!"}) chain.invoke({"input": "刚才我跟你打了招呼"})

这样模型就能基于上下文做出更连贯的回应。

5. 总结

本文带你完成了从零开始调用Qwen3-1.7B的全过程:从镜像启动、Jupyter环境接入,到使用LangChain发起请求并处理响应。我们不仅实现了基本的文本交互,还展示了流式输出、思维链启用和常见问题排查方法。

Qwen3-1.7B凭借其小巧高效的特性,非常适合嵌入到教育项目、轻量级AI助手或企业内部工具中。结合LangChain的强大生态,开发者可以快速搭建出具备上下文感知、记忆能力和结构化输入输出的智能应用。

下一步,你可以尝试将其与其他工具链(如向量数据库、检索增强RAG)结合,进一步拓展应用场景。


获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1195149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

固原市西吉隆德泾源彭阳原州英语雅思培训辅导机构推荐、2026权威出国雅思课程中心学校口碑排行榜

在全球化教育浪潮下,雅思成绩已成为固原市西吉、隆德、泾源、彭阳、原州等区县学子出国深造的核心门槛,也成为职场人士提升国际竞争力的重要筹码。然而,雅思备考之路布满荆棘,多数考生面临着选课时难以甄别优质教育…

独家披露:大厂都在用的dify长文本预处理方案(索引成功率提升至100%)

第一章:dify 知识库索引失败提示段落过长解决方法 当使用 Dify 构建知识库时,若上传的文档(如 PDF、TXT 或 Markdown)中存在超长段落(例如单一段落超过 2000 字符),Dify 默认的文本分割器&#…

昆明市富民石林禄劝寻甸安宁英语雅思培训辅导机构推荐,2026权威出国雅思课程中心学校口碑排行榜

在全球化教育交流持续深化的背景下,雅思成绩已成为昆明市富民、石林、禄劝、寻甸、安宁等区域学子申请海外院校的核心“敲门砖”。然而,多数考生在雅思培训备考过程中深陷诸多痛点:优质教育机构资源稀缺且分布不均,…

ue web socket server

ue5.1 web socket server:github地址:https://github.com/h2ogit/UE5-ServerWebSocket/tree/main/ServerWebSockethttps://github.com/h2ogit/UE5-ServerWebSocketLite

Z-Image-Turbo API安全配置:生产环境接口访问控制教程

Z-Image-Turbo API安全配置:生产环境接口访问控制教程 Z-Image-Turbo 是阿里巴巴通义实验室开源的高效AI图像生成模型,作为 Z-Image 的蒸馏版本,它以极快的生成速度(仅需8步)、卓越的图像质量(具备照片级真…

GPEN支持自定义图片修复?inference_gpen.py参数详解

GPEN支持自定义图片修复?inference_gpen.py参数详解 你是不是也遇到过这样的问题:手头有一张模糊、有噪点、带划痕甚至缺损的人像老照片,想修复却苦于操作复杂、环境难配、参数看不懂?别急——GPEN人像修复增强模型镜像&#xff…

Qwen3-0.6B企业级部署:生产环境稳定性实战测试

Qwen3-0.6B企业级部署:生产环境稳定性实战测试 1. Qwen3-0.6B 模型简介与定位 Qwen3(千问3)是阿里巴巴集团于2025年4月29日开源的新一代通义千问大语言模型系列,涵盖6款密集模型和2款混合专家(MoE)架构模…

分析服务不错的线下广告监测企业,浦零科技怎么收费

问题1:实力强的线下广告监测专业公司需要具备哪些核心能力? 实力强的线下广告监测专业公司,核心能力需覆盖全链路执行技术驱动精准多维度质控三大板块。首先是全国性的执行网络,能快速响应不同区域的监测需求——比…

2026年1月中国跨境电商卖家必看:美国尾程物流痛点破解与货马达(Homeda)一站式解决方案指南

随着跨境电商的蓬勃发展,美国尾程物流已成为中国卖家出海的关键环节。然而,美国尾程物流市场仍存在诸多痛点,影响着中国卖家的运营效率和成本控制。根据2025年行业报告,超过60%的中国跨境电商卖家在尾程运输环节遭…

想找海外能源投资律师,哪家服务靠谱费用合理?

随着一带一路倡议的深入推进,中国企业在非洲、东南欧等地区的能源投资项目数量持续增长,但境外复杂的法律环境、监管政策差异和跨境争议风险,让企业对专业海外能源投资律师的需求愈发迫切。本文围绕海外能源投资律师…

ANSYS workbench的模态分析基本原理和步骤

本文参考其他作者的文章进行转载、修改完成的,不作为盈利目的, 仅供学习、交流。 转载请说明转载出处!!!(原文请见:ANSYS workbench的模态分析基本原理和步骤_workbench模态分析-CSDN博客) 1、模态分析基本原理…

2026最新海南公司注册服务商/机构TOP5评测!专业团队+全流程服务权威榜单发布,助力企业轻松布局自贸港

随着海南自贸港建设的持续深化,越来越多的企业将目光投向这片充满机遇的热土。海南公司注册作为布局自贸港的第一步,选择专业可靠的服务机构至关重要。本榜单基于服务经验、专业团队、业务范围、客户口碑四大维度,结…

天津3D效果图设计哪家好?田字格设计机构为您提供专业解答

在天津寻求高品质的3D效果图设计服务时,许多客户会问:哪家设计机构更值得信赖?今天,我们将结合一家在北方设计领域颇具口碑的机构——田字格设计机构的特点,为您分析如何选择一家合适的合作伙伴。为什么选择专业设…

再互动拆解元气森林的“扫码赢红包”为何刷屏

元气森林瓶盖内二维码营销活动。一次简单的扫码,可能是0.3元的现金到账,也可能是25元的优惠券,甚至可能是令人心跳加速的“免单”大奖。 这不是随机的运气游戏,而是经过精密计算的营销策略。在2024-2025年饮料行业…

2026最新柜子定制板材十大品牌推荐!国内优质柜子定制板材公司权威榜单发布,环保与品质双优助力家居升级

随着全屋定制市场需求持续增长,消费者对柜子定制板材的环保性、稳定性与美学设计提出更高要求。据中国林产工业协会最新行业报告显示,2025年国内定制板材市场规模突破1200亿元,但环保不达标、花色同质化、服务体系不…

怎么用postman测试上传文件接口

怎么用postman测试上传文件接口file 设为“file”类型(更多里“数据类型”可点)上面的入参在登录成功从这里取

深圳办公室效果图怎样呈现高端品质?田字格设计机构来揭秘

在深圳这座充满活力与创新的城市,高端品质的办公室效果图对于企业而言至关重要。它不仅是企业形象的直观展示,更是吸引客户、提升企业竞争力的重要手段。那么,怎样才能打造出具有高端品质的深圳办公室效果图呢?田字…

2026河南古筝品牌评测:选对厂家不踩坑,古筝/瑶鸾古筝Y103系列(梦蝶)/瑶鸾古筝Y106系列,古筝品牌厂家找哪家

作为中国传统文化的重要载体,古筝的选购直接影响演奏体验与学习效果。河南作为古筝核心产区,聚集了数百家生产厂家,但工艺水平、音色表现、售后服务差异显著。本次评测以“专业性能、性价比、工艺细节、售后保障”四…

国产UI设计工具评测

背景 打算选用一款便于前端开发的UI设计工具。 列表如果不限定国产,那么Figma和Sketch是绕不开的两个软件。 然而Figma看margin之类的太费劲了,国内的工具会人性化很多。 以下工具大致按照知名度排行即时设计 蓝湖 -…

加热器行业蓬勃发展,国产标杆供应商引领市场新征程

2025年,全球加热器市场迎来强劲增长态势,市场规模成功突破850亿美元,权威预测显示,2026年这一数字有望攀升至约1500亿美元。回顾2021-2025年,全球加热器领域共披露127起投融资事件,累计披露金额超42亿美元,充分…