一、项目介绍
摘要
本项目基于YOLOv10目标检测算法,开发了一套高效、精准的铁路轨道缺陷智能检测系统,用于自动识别轨道表面的四种常见缺陷:裂纹(Crack)、断裂(Putus)、剥落(Spalling)和压损(Squat)。该系统在包含1312张训练图像、184张验证图像和97张测试图像的数据集上进行训练和优化,能够实时检测轨道缺陷,辅助铁路维护人员快速定位问题区域,提高铁路安全性和运维效率。
本系统可集成于轨道巡检车、无人机巡检系统或固定式轨道监测设备,为铁路基础设施的智能化维护提供技术支持,减少人工检查成本,并提升缺陷检测的准确性和响应速度。
项目意义
铁路轨道作为列车运行的基础设施,其健康状况直接影响行车安全。传统的人工巡检方式效率低、成本高,且受天气、光线等因素影响较大。本项目的实施具有以下重要意义:
提升铁路安全性:
通过AI自动检测轨道缺陷,减少漏检、误检,防止因轨道损伤导致的脱轨事故。
可集成到实时监测系统中,在缺陷恶化前提前预警,降低重大事故风险。
降低运维成本:
替代部分人工巡检工作,减少人力成本和时间消耗。
通过自动化分析,提高检测效率,缩短铁路维护周期。
支持智能铁路发展:
为智能轨道巡检机器人和无人机巡检提供核心检测算法。
结合大数据分析,预测轨道劣化趋势,优化维护计划。
标准化缺陷检测:
建立统一的轨道缺陷检测标准,减少人工判断的主观性。
为铁路行业提供可复用的AI检测模型,推动智能化升级。
目录
一、项目介绍
摘要
项目意义
二、项目功能展示
系统功能
图片检测
视频检测
摄像头实时检测
三、数据集介绍
数据集概述
数据集特点
数据集配置文件
数据集制作流程
四、项目环境配置
创建虚拟环境
pycharm中配置anaconda
安装所需要库
五、模型训练
训练代码
训练结果
六、核心代码
七、项目源码(视频下方简介内)
基于深度学习YOLOv10的铁路轨道缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习YOLOv10的铁路轨道缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
二、项目功能展示
系统功能
✅图片检测:可对图片进行检测,返回检测框及类别信息。
✅视频检测:支持视频文件输入,检测视频中每一帧的情况。
✅摄像头实时检测:连接USB 摄像头,实现实时监测。
✅参数实时调节(置信度和IoU阈值)
图片检测
该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。
视频检测
视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。
摄像头实时检测
该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。
核心特点:
- 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
- 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
- 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。
三、数据集介绍
数据集概述
本系统采用专门采集和标注的铁路轨道缺陷数据集,共包含1593张高分辨率图像,涵盖不同光照条件、轨道类型和缺陷程度。数据集划分如下:
训练集:1312张(用于模型训练)
验证集:184张(用于超参数调优)
测试集:97张(用于最终性能评估)
所有图像均经过专业标注,采用YOLO格式(每张图像对应一个.txt文件,存储归一化边界框坐标和类别标签)。
数据集特点
缺陷类别全面:
Crack(裂纹):轨道表面或内部的线性裂缝。
Putus(断裂):轨道完全或部分断裂,影响结构完整性。
Spalling(剥落):轨道表面材料脱落,形成坑洼。
Squat(压损):因轮轨接触疲劳导致的局部凹陷。
场景多样性:
不同轨道类型(高铁、普速铁路、地铁轨道)。
不同光照条件(白天、夜间、隧道内、雨雾天气)。
不同拍摄角度(俯视、侧视、近距离特写)。
挑战性样本:
微小缺陷(需高分辨率检测)。
复杂背景干扰(如道砟、铁锈、污渍)。
部分遮挡(如轨道积雪、落叶覆盖)。
数据集配置文件
数据集采用YAML配置文件,结构如下:
# yolov8_rail_defect.yaml path: ../datasets/rail_defect train: images/train val: images/val test: images/test nc: 4 names: ['Crack', 'Putus', 'Spalling', 'Squat']数据集制作流程
数据采集:
使用轨道巡检车搭载高清摄像头拍摄轨道表面。
从公开铁路数据集(如Rail-Defect Dataset)补充部分样本。
模拟不同环境(如低光照、雨雾)进行数据增强。
数据清洗:
剔除模糊、过曝或重复的图像。
确保每类缺陷样本分布均衡(避免数据偏斜)。
数据标注:
使用LabelImg或CVAT标注工具,手动绘制缺陷边界框。
每张图像由两名标注员独立标注,并通过交叉验证确保准确性。
数据增强:
几何变换(旋转、缩放、裁剪)模拟不同视角。
光度调整(亮度、对比度、噪声)增强泛化能力。
模拟遮挡(随机添加阴影、污渍)提高鲁棒性。
格式转换:
将标注转换为YOLO格式(
class_id x_center y_center width height)。生成数据集配置文件,并检查数据完整性。
四、项目环境配置
创建虚拟环境
首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。
终端输入
conda create -n yolov10 python==3.9
激活虚拟环境
conda activate yolov10
安装cpu版本pytorch
pip install torch torchvision torchaudio
pycharm中配置anaconda
安装所需要库
pip install -r requirements.txt
五、模型训练
训练代码
from ultralytics import YOLOv10 model_path = 'yolov10s.pt' data_path = 'datasets/data.yaml' if __name__ == '__main__': model = YOLOv10(model_path) results = model.train(data=data_path, epochs=500, batch=64, device='0', workers=0, project='runs/detect', name='exp', )根据实际情况更换模型 yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov10s.yaml (small):小模型,适合实时任务。 yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov10b.yaml (base):基本版模型,适合大部分应用场景。 yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
--batch 64:每批次64张图像。--epochs 500:训练500轮。--datasets/data.yaml:数据集配置文件。--weights yolov10s.pt:初始化模型权重,yolov10s.pt是预训练的轻量级YOLO模型。
训练结果
六、核心代码
import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal = pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parent=None): super().__init__(parent) self.model = model self.source = source self.conf = conf self.iou = iou self.running = True def run(self): try: if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头 cap = cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame = cap.read() if not ret: break # 保存原始帧 original_frame = frame.copy() # 检测 results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame = cv2.imread(self.source) if frame is not None: original_frame = frame.copy() results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(f"Detection error: {e}") finally: self.finished_signal.emit() def stop(self): self.running = False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model = None self.detection_thread = None self.current_image = None self.current_result = None self.video_writer = None self.is_camera_running = False self.is_video_running = False self.last_detection_result = None # 新增:保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name = self.model_combo.currentText() self.model = YOLOv10(f"{model_name}.pt") # 自动下载或加载本地模型 self.update_status(f"模型 {model_name} 加载成功") except Exception as e: QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}") self.update_status("模型加载失败") def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.clear_results() self.current_image = cv2.imread(file_path) self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测图片: {os.path.basename(file_path)}") def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.clear_results() self.is_video_running = True # 初始化视频写入器 cap = cv2.VideoCapture(file_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") save_path = os.path.join(save_dir, f"result_{timestamp}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测视频: {os.path.basename(file_path)}") def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return self.clear_results() self.is_camera_running = True # 创建检测线程 (默认使用摄像头0) conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status("正在从摄像头检测...") def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer = None self.is_camera_running = False self.is_video_running = False self.update_status("检测已停止") def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result = result_frame # 新增:保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer = None self.update_status("视频检测完成,结果已保存") elif self.is_camera_running: self.update_status("摄像头检测已停止") else: self.update_status("图片检测完成") def save_result(self): if not hasattr(self, 'last_detection_result') or self.last_detection_result is None: QMessageBox.warning(self, "警告", "没有可保存的检测结果") return save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"截图已保存: {save_path}") else: # 保存图片检测结果 save_path = os.path.join(save_dir, f"result_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"检测结果已保存: {save_path}") def closeEvent(self, event): self.stop_detection() event.accept() if __name__ == "__main__": app = QApplication(sys.argv) # 设置应用程序样式 app.setStyle("Fusion") # 创建并显示主窗口 window = MainWindow() window.show() sys.exit(app.exec_())七、项目源码(视频下方简介内)
完整全部资源文件(包括测试图片、视频,py文件,训练数据集、训练代码、界面代码等),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:
基于深度学习YOLOv10的铁路轨道缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习YOLOv10的铁路轨道缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)