C++课后习题训练记录Day70

1.练习项目:

问题描述

小蓝出生在一个艺术与运动并重的家庭中。

妈妈是位书法家,她希望小蓝能通过练习书法,继承她的艺术天赋,并练就一手好字。爸爸是一名篮球教练,他希望小蓝能通过篮球锻炼身体,培养运动的激情和团队合作的精神。

为了既满足妈妈的期望,又不辜负爸爸的心意,小蓝决定根据日期的笔画数来安排自己的练习。首先,他会将当天的日期按照 “YYYYMMDD” 的格式转换成一个 8 位数,然后将这 88 位数对应到汉字上,计算这些汉字的总笔画数。如果总笔画数超过 50,他就去练习篮球;如果总笔画数不超过 50,他就去练习书法。

例如,在 2024 年 1 月 1 日这天,日期可表示为一个 8 位数字 20240101,其转换为汉字是“二零二四零一零一”。日期的总笔画数为 2+13+2+5+13+1+13+1=50,因此在这天,小蓝会去练习书法。

以下是汉字的笔画数对照表:

汉字笔画数
13
1
2
3
5
4
4
2
2
2

现在,请你帮助小蓝统计一下,在 2000 年 1 月 1 日到 2024 年 4 月 13 日这段时间内,小蓝有多少天是在练习篮球?

答案提交

这是一道结果填空题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

2.选择课程

在蓝桥云课中选择课程《16届蓝桥杯省赛无忧班(C&C++ 组)4期》,选择第二章“基础算法”编程13并开始练习。

3.开始练习

(1)源码:
#include<bits/stdc++.h>
using namespace std;
const int a[10]={13,1,2,3,5,4,4,2,2,2};
bool isLeapyear(int year)
{
return (year%4==0&&year%100!=0)||(year%400==0);
}
int cal(int i)
{
int sum=0,temp=0;
int b[10];
while(i!=0){
b[temp]=i%10;
temp++;
i/=10;
}
temp+=1; //通过位数判断操作,但当位数为1时会判断错误,故先+1再-1。
if(temp==2){
for(int j=0;j<temp-1;j++){
sum+=a[0]+a[b[j]];
}
}else{
for(int j=0;j<temp-1;j++){
sum+=a[b[j]];
}
}
return sum;
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int ans=0,sum=0,endmonth=12;
for(int i=2000;i<=2024;i++){
int days[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
if(i==2024)endmonth=4;
if(isLeapyear(i)){
days[2]=29;
}
for(int j=1;j<=endmonth;j++){

if(i==2024&&j==4)days[j]=13;
for(int k=1;k<=days[j];k++){
sum=cal(i)+cal(j)+cal(k);
if(sum>50){
ans++;
}
}
}
}
cout<<ans<<'\n';
return 0;
}

(2)检验结果

对此代码进行检验,检验后无报错,提交此代码,判题结果为正确100分。

(3)练习心得:注意每段代码末尾的分号是否存在,如不存在则需即使补充;输入法是否切换为英语模式;语法是否错误。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1191961.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SGLang高吞吐秘诀:并行请求处理部署实战

SGLang高吞吐秘诀&#xff1a;并行请求处理部署实战 SGLang-v0.5.6 是当前推理框架领域中备受关注的一个版本&#xff0c;它在大模型服务部署方面展现出卓越的性能表现。尤其在高并发、低延迟场景下&#xff0c;SGLang 通过一系列底层优化技术&#xff0c;显著提升了系统的整体…

Glyph推理中断?资源监控与恢复机制部署教程

Glyph推理中断&#xff1f;资源监控与恢复机制部署教程 1. 为什么你的Glyph推理总是中断&#xff1f; 你是不是也遇到过这种情况&#xff1a;正在用Glyph跑一个长文本视觉推理任务&#xff0c;结果突然卡住、页面无响应&#xff0c;刷新后发现推理进程已经没了&#xff1f;或…

亲测Qwen3-1.7B镜像,AI对话真实体验分享超简单

亲测Qwen3-1.7B镜像&#xff0c;AI对话真实体验分享超简单 1. 实际体验前的准备&#xff1a;快速启动与调用方式 最近在CSDN星图上试用了新上线的 Qwen3-1.7B 镜像&#xff0c;整体体验非常流畅。这款模型是阿里巴巴通义千问系列在2025年4月推出的轻量级大语言模型之一&#…

小白必看:GLM-TTS文本转语音快速入门指南

小白必看&#xff1a;GLM-TTS文本转语音快速入门指南 1. 快速上手&#xff0c;5分钟生成你的第一段AI语音 你有没有想过&#xff0c;只需要几秒钟的录音&#xff0c;就能让AI模仿出一模一样的声音&#xff1f;还能用这个声音读出你想说的任何话——无论是中文、英文&#xff…

AI图像处理新标准:cv_unet_image-matting支持TIFF/BMP等多格式部署指南

AI图像处理新标准&#xff1a;cv_unet_image-matting支持TIFF/BMP等多格式部署指南 1. 快速上手&#xff1a;什么是cv_unet_image-matting&#xff1f; 你是否还在为复杂背景的人像抠图烦恼&#xff1f;手动选区费时费力&#xff0c;边缘处理总是不够自然。现在&#xff0c;一…

用Z-Image-Turbo批量生成商品图,效率提升十倍

用Z-Image-Turbo批量生成商品图&#xff0c;效率提升十倍 在电商运营中&#xff0c;高质量的商品图是转化率的关键。但传统拍摄成本高、周期长&#xff0c;设计师修图耗时耗力&#xff0c;尤其面对成百上千 SKU 的上新需求时&#xff0c;团队常常疲于奔命。有没有一种方式&…

零基础玩转YOLOv13:官方镜像让学习更简单

零基础玩转YOLOv13&#xff1a;官方镜像让学习更简单 你是不是也曾经被复杂的环境配置、依赖冲突和版本问题劝退过&#xff1f;想学目标检测&#xff0c;却被“pip install 失败”、“CUDA 不兼容”、“找不到模块”这些报错搞得心力交瘁&#xff1f; 别担心&#xff0c;今天…

GPEN开源协议解读:版权保留要求与二次开发规范

GPEN开源协议解读&#xff1a;版权保留要求与二次开发规范 1. 引言&#xff1a;GPEN图像肖像增强项目背景 你可能已经用过或听说过GPEN——一个专注于人脸图像增强与老照片修复的开源工具。它不仅能提升模糊人像的清晰度&#xff0c;还能智能修复划痕、噪点和褪色问题&#x…

Open-AutoGLM连接失败怎么办?常见问题解决方案

Open-AutoGLM连接失败怎么办&#xff1f;常见问题解决方案 本文基于智谱AI开源项目 Open-AutoGLM 的实际部署经验&#xff0c;系统梳理在使用该手机端AI Agent框架时可能遇到的连接问题&#xff0c;并提供可落地的排查与解决方法。无论你是第一次尝试部署&#xff0c;还是在远程…

麦橘超然随机种子失效?参数传递错误修复实战案例

麦橘超然随机种子失效&#xff1f;参数传递错误修复实战案例 1. 问题背景&#xff1a;你以为的“随机”可能根本没生效 你有没有遇到过这种情况——在使用 AI 图像生成工具时&#xff0c;明明把 随机种子&#xff08;Seed&#xff09;设为 -1&#xff0c;期望每次点击都能得到…

提升用户体验:unet人像卡通化界面优化实战分享

提升用户体验&#xff1a;unet人像卡通化界面优化实战分享 1. 功能概述 本工具基于阿里达摩院 ModelScope 的 DCT-Net 模型&#xff0c;支持将真人照片转换为卡通风格。项目由科哥构建并持续优化&#xff0c;旨在提供一个稳定、易用、高效的人像卡通化解决方案。 核心功能亮…

单图+批量双模式!Unet人像卡通化完整功能解析

单图批量双模式&#xff01;Unet人像卡通化完整功能解析 1. 功能亮点与核心价值 你有没有想过&#xff0c;一张普通的人像照片&#xff0c;只需要几秒钟&#xff0c;就能变成漫画风格的酷炫头像&#xff1f;现在&#xff0c;这个想法已经可以轻松实现。 今天要介绍的这款基于…

2025大模型趋势入门必看:Qwen3开源模型+弹性GPU部署实战

2025大模型趋势入门必看&#xff1a;Qwen3开源模型弹性GPU部署实战 1. Qwen3-1.7B&#xff1a;轻量级大模型的实用之选 如果你正在寻找一个既能跑在消费级显卡上&#xff0c;又能具备较强语言理解与生成能力的开源大模型&#xff0c;那么 Qwen3-1.7B 绝对值得关注。作为通义千…

SGLang资源占用过高?内存管理优化部署实战方案

SGLang资源占用过高&#xff1f;内存管理优化部署实战方案 在大模型推理部署的实际应用中&#xff0c;性能与资源消耗往往是一对矛盾体。SGLang-v0.5.6 作为当前较为活跃的版本&#xff0c;在提升推理吞吐和降低延迟方面表现亮眼&#xff0c;但不少开发者反馈其在高并发场景下…

Z-Image-Turbo指令遵循能力实测:说啥就能画啥?

Z-Image-Turbo指令遵循能力实测&#xff1a;说啥就能画啥&#xff1f; 1. 引言&#xff1a;当AI绘画遇见“听话”的模型 你有没有遇到过这种情况&#xff1f;在用AI画画时&#xff0c;明明输入了非常详细的描述&#xff0c;结果生成的图片却总是“理解偏差”——想要一只猫坐…

MGeo模型如何参与Benchmark?开源评测平台提交教程

MGeo模型如何参与Benchmark&#xff1f;开源评测平台提交教程 1. 为什么MGeo在地址相似度任务中值得关注&#xff1f; 你有没有遇到过这样的问题&#xff1a;两个地址看起来差不多&#xff0c;但一个是“北京市朝阳区建国路88号”&#xff0c;另一个是“北京朝阳建国门外88号…

Z-Image-Turbo 8 NFEs性能解析:函数评估次数优化实战

Z-Image-Turbo 8 NFEs性能解析&#xff1a;函数评估次数优化实战 1. 什么是Z-Image-Turbo&#xff1f;为什么8次函数评估如此关键&#xff1f; 你可能已经听说过阿里最新开源的文生图大模型 Z-Image&#xff0c;但真正让它在众多生成模型中脱颖而出的&#xff0c;是它的 Turb…

超详细图解:一步步教你启动CAM++说话人识别服务

超详细图解&#xff1a;一步步教你启动CAM说话人识别服务 1. 引言&#xff1a;快速上手&#xff0c;零基础也能玩转语音识别 你是否想过&#xff0c;让机器听一段声音就能判断是不是同一个人在说话&#xff1f;这听起来像是科幻电影里的场景&#xff0c;但今天&#xff0c;它…

开箱即用!Hunyuan-MT-7B-WEBUI三步完成WebUI翻译任务

开箱即用&#xff01;Hunyuan-MT-7B-WEBUI三步完成WebUI翻译任务 在AI技术飞速发展的今天&#xff0c;越来越多的开源工具以英文为默认语言。对于非英语用户&#xff0c;尤其是少数民族语言使用者来说&#xff0c;这道“语言墙”往往成为接触前沿技术的第一道门槛。Stable Dif…

数字人项目落地难?HeyGem提供开箱即用解决方案

数字人项目落地难&#xff1f;HeyGem提供开箱即用解决方案 在AI内容创作的浪潮中&#xff0c;数字人正从概念走向规模化应用。无论是企业宣传、在线教育&#xff0c;还是短视频运营&#xff0c;越来越多团队希望借助数字人技术提升内容生产效率。然而&#xff0c;现实中的落地…