微服务保护学习 - 详解

news/2026/1/20 12:41:53/文章来源:https://www.cnblogs.com/gccbuaa/p/19506036

1.初识Sentinel

1.1.雪崩问题及解决方案

1.1.1.雪崩问题

1.1.2解决雪崩问题的四个方法

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix

  • Sentinel

  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的SPI扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

我电脑上目前使用的是jdk17 但是这个版本的sentinel还没兼容17所以建议用8或者11!!

所以阔以用下面的命令
E:\heimalesson>"C:\Program Files\Java\jdk-11.0.15.1\bin\java.exe" -jar sentinel-dashboard-1.8.1.jar
来显示的指定使用Java11来启动

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖


   com.alibaba.cloud    spring-cloud-starter-alibaba-sentinel

2)配置控制台

修改application.yaml文件,添加下面内容:

server:port: 8088
spring:cloud:    sentinel:     transport:       dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:如果没有的话就在8088那order下请求一下回来再刷新就有了

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制

  • 降级:降级熔断

  • 热点:热点参数限流,是限流的一种

  • 授权:请求的权限控制

2.1.快速入门

2.1.1.示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

表单中可以填写限流规则,如下:

2.1.2.练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

2)利用jmeter测试(这里是直接导入了一个文件)

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {   return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {   return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

4)在Jmeter测试

选择《流控模式-关联》:

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

5)总结

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

1)添加查询商品方法
4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

在order-service服务中,给OrderService类添加一个queryGoods方法:

2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

 3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

完全不受影响。

另一个是访问/order/query:每次只有2个通过。

2.2.3.总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

2)Jmeter测试

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms

  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

2)Jmeter测试

选择《流控效果,队列》:

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

!!注意事项!!:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

点击新增,填写表单:

3)Jmeter测试

选择《热点参数限流 QPS1》:

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:sentinel:   enabled: true # 开启feign对sentinel的支持

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一:在feing-api项目中定义类,实现FallbackFactory:

代码:

package cn.itcast.feign.clients.fallback;
​
import cn.itcast.feign.clients.UserClient;
import cn.itcast.feign.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;
​
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory {   @Override   public UserClient create(Throwable throwable) {       return new UserClient() {           @Override           public User findById(Long id) {               log.error("查询用户异常", throwable);               return new User();           }       };   }
}
​

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){   return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

import cn.itcast.feign.clients.fallback.UserClientFallbackFactory;
import cn.itcast.feign.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
​
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {
​   @GetMapping("/user/{id}")   User findById(@PathVariable("id") Long id);
}

重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:但是我这却遇到问题了 说是循环依赖问题 我这只要orderservice开启feign对sentinel的支持就报错 启动不了 然后我还将jdk改为java8也不行 然后再orderservice中使用@Lazy懒加载后虽然阔以启动 但是在调用网页的时候却还是报错了 后面发现是版本不兼容的问题 springboot是2.3.9.Release然后springcloud的版本就要使用Hoxton.SR8才行

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)

  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true

  • 给FeignClient编写FallbackFactory并注册为Bean

  • 将FallbackFactory配置到FeignClient

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:

2)Jmeter测试

选择《阈值类型-线程数<2》:

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态

  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态

  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。

    • 请求成功:则切换到closed状态

    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例

需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:

此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:

orderId=102的订单,关联的是id为2的用户,调用时长为非常短;

2)设置熔断规则

下面,给feign接口设置降级规则:

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:

触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了,因为101触发了熔断 所以此时102就也会访问不了:

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常数不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:

2)设置熔断规则

下面,给feign接口设置降级规则:

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。

    • 如果是勾选黑名单,则名单中的来源被禁止访问。

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {/*** 从请求request对象中获取origin,获取方式自定义*/String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import javax.servlet.http.HttpServletRequest;
@Component
public class HeaderOriginParser implements RequestOriginParser {@Overridepublic String parseOrigin(HttpServletRequest request) {// 1.获取请求头String origin = request.getHeader("origin");// 2.非空判断if (StringUtils.isEmpty(origin)) {origin = "blank";}return origin;}
}

我们会尝试从request-header中获取origin值。

但是request对象里是没有origin的这个头的!!所以如何要得到的话只能从网关的那配置文件中添加请求头

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {/*** 处理请求被限流、降级、授权拦截时抛出的异常:BlockException*/void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象

  • HttpServletResponse response:response对象

  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException) {msg = "请求被限流了";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级了";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。

  • pull模式

  • push模式

5.1.1.pull模式(不推荐)

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。因为定时轮询去查询数据库然后存在数据一致性的问题

5.1.2.push模式(很麻烦 还需要修改源码)

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

Sentinel 规则持久化

http://通过网盘分享的文件:day01-微服务保护(1).rar 链接: https://pan.baidu.com/s/1ISYxrUXblMmcnrkIXzYwYw?pwd=bgd6 提取码: bgd6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1188982.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5中如何使用WebUploader实现大附件上传?

武汉光谷XX软件公司大文件传输组件选型与自研方案 一、项目背景与需求分析 作为武汉光谷地区专注于软件研发的高新技术企业&#xff0c;我司长期服务于政府和企业客户&#xff0c;在政务信息化、企业数字化转型等领域积累了丰富的经验。当前&#xff0c;我司核心产品面临大文…

2025必读!北京箱式房定制口碑榜,集装箱改造/箱式房/集成房屋设计/集装箱生产,箱式房定制推荐榜单 - 品牌推荐师

随着城市化进程加速与临时建筑需求激增,箱式房凭借其模块化、可移动、环保经济等特性,成为建筑工地、商业展陈、文旅营地等场景的核心解决方案。然而,市场品牌鱼龙混杂,产品同质化严重,如何筛选出兼具技术实力与口…

Vue.js项目中如何集成百度开源上传组件?

前端老哥的外包求生记&#xff1a;20G大文件上传系统&#xff08;Vue3原生JS&#xff09; 兄弟们&#xff01;我是福建一名“头发渐少但代码不秃”的前端程序员&#xff0c;最近接了个外包活——给客户做文件管理系统&#xff0c;核心需求就一个&#xff1a;“20G大文件文件夹…

从接需求到上线:Trae 的“原生中文 Agent”模式,是否真的比 Cursor Composer 更懂中国程序员?

标签&#xff1a; #Trae #Cursor #AI编程 #IDE #国产软件 #字节跳动&#x1f4c9; 前言&#xff1a;Cursor 很强&#xff0c;但它“不懂”中国特色 Cursor 无疑是伟大的。它的 Composer 模式允许你按 CtrlI 直接指挥 AI 修改整个项目。 但当你试图用它开发一个 “微信小程序” …

Vue2与Vue3在实现大文件断点续传上有何区别?

大文件上传方案探索&#xff1a;从WebUploader到自定义分片上传的实践 作为一名前端开发工程师&#xff0c;最近遇到了一个颇具挑战性的需求&#xff1a;需要在Vue项目中实现4GB左右大文件的稳定上传&#xff0c;且要兼容Chrome、Firefox、Edge等主流浏览器&#xff0c;后端使…

6款高效论文辅助软件推荐,附赠专业公式编辑教程

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

学术写作利器盘点:6款主流工具+公式编辑资源大全

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

6大论文写作平台功能解析,搭配高效公式编辑解决方案

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

精选6大论文写作辅助平台,涵盖专业公式编辑工具解析

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

红队实战:用 CodeQL + LLM 打造“自动代码审计机”,我在 GitHub 热门项目里挖到了 3 个 0-day

标签&#xff1a; #CodeQL #LLM #RedTeam #0Day #AutomatedAudit #CyberSecurity&#x1fa78; 前言&#xff1a;告别“误报地狱” 每一个做过源码审计的人都知道&#xff0c;使用传统工具扫描时&#xff0c;最痛苦的不是没漏洞&#xff0c;而是99% 的误报。 工具告诉你&#x…

6款热门论文辅助工具详细对比,附带公式编辑实用资源

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

智能合约“黑暗森林”:复现 DeFi 重入攻击,AI 竟然比黑客更快发现了合约漏洞?

标签&#xff1a; #Web3 #BlockchainSecurity #Solidity #AI #Reentrancy&#x1fa78; 前言&#xff1a;当 ATM 机发疯的时候 想象一下&#xff0c;你在这个世界上有一台特殊的 ATM 机。 如果你去取 100 块钱&#xff0c;它的流程是这样的&#xff1a; 检查余额&#xff1a;看…

深度解析6款论文辅助工具,提供专业公式编辑技巧指南

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

论文写作必备工具清单:6大平台测评与公式编辑资源

核心工具对比速览 工具名称 核心功能 适用阶段 独特优势 AIbiye 论文结构优化 初稿完成后 理工科逻辑框架自动检测 AIcheck 万字论文生成 开题/初稿 实证研究模块内置 AskPaper 文献综述生成 文献调研 中英文文献混合处理 秒篇 快速论文生成 紧急任务 10分钟…

2.网络通信知识点

1、以上仅供参考,如有疑问,留言联系

Rocketmq Dashboard jar 包启动,使用启动命令参数,修改 NameServer 的地址

Rocketmq Dashboard jar 包启动&#xff0c;使用启动命令参数&#xff0c;修改 NameServer 的地址 你可以直接在启动 rocketmq-dashboard 的 JAR 包时&#xff0c;通过命令行参数来指定 NameServer 的地址。这种方式非常灵活&#xff0c;无需修改 JAR 包内部的配置文件。 以下是…

adsldp.dll文件损坏找不到问题 免费下载方法分享

在使用电脑系统时经常会出现丢失找不到某些文件的情况&#xff0c;由于很多常用软件都是采用 Microsoft Visual Studio 编写的&#xff0c;所以这类软件的运行需要依赖微软Visual C运行库&#xff0c;比如像 QQ、迅雷、Adobe 软件等等&#xff0c;如果没有安装VC运行库或者安装…

2026年行业内质量好的截止阀企业哪家好,电动闸阀/暗杆闸阀/铸钢闸阀/手动盲板阀/硬密封球阀,截止阀供应商联系电话 - 品牌推荐师

在工业自动化与能源转型的双重驱动下,不锈钢截止阀作为管道系统中的核心控制元件,其质量直接关系到石油化工、电力能源、冶金制造等重工业领域的安全生产与效率提升。据中国机械工业联合会及《阀门行业白皮书(2025)…

想找口碑好的展柜制作厂电话?文博展示! - 工业品牌热点

本榜单依托全维度市场调研与真实行业口碑,深度筛选出五家标杆企业,为企业选型提供客观依据,助力精准匹配适配的展柜制作伙伴。 TOP1 推荐:成都盛世文博展览展示有限公司 推荐指数:★★★★★ | 口碑评分:西南地区…

AdvancedEmojiDS.dll文件丢失找不到问题 免费下载方法分享

在使用电脑系统时经常会出现丢失找不到某些文件的情况&#xff0c;由于很多常用软件都是采用 Microsoft Visual Studio 编写的&#xff0c;所以这类软件的运行需要依赖微软Visual C运行库&#xff0c;比如像 QQ、迅雷、Adobe 软件等等&#xff0c;如果没有安装VC运行库或者安装…