智慧果园树上腰果成熟度检测数据集VOC+YOLO格式4700张6类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):4700

标注数量(xml文件个数):4700

标注数量(txt文件个数):4700

标注类别数:6

所在github仓库:firc-dataset

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["cashew_tree","flower","immature","mature","ripe","spoilt"]

每个类别标注的框数:

cashew_tree (腰果树) 框数 = 16687

flower (花) 框数 = 11700

immature (未成熟果) 框数 = 4230

mature (成熟果) 框数 = 11688

ripe (成熟) 框数 = 514

spoilt (腐烂果) 框数 = 1099

总框数:45918

图片分辨率:1600x1300

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证

图片预览:

标注例子:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1188345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Python的电商购物商城管理系统 0151px5p

目录项目概述核心功能技术架构特色与创新应用场景开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!项目概述 Python电商购物商城管理系统是一个基于Web的全功能电子商务平台,旨在…

FLUX.2 Klein:消费级GPU也能实现的亚秒级图像生成

2026年1月19日,Black Forest Labs(黑森林实验室)正式开源了FLUX.2系列中的轻量级成员——FLUX.2 [klein]模型家族。作为目前最快的图像生成模型系列之一,FLUX.2 [klein]以其亚秒级推理速度和消费级硬件友好性迅速吸引了开发者的关…

我的 ASP.NET 点餐系统项目实战之旅

asp.net的点餐系统项目,才答辩完,可以使用。 使用了百度API,也是三层架构,有管理员后台和商家前台 刚完成了 ASP.NET 点餐系统的答辩,现在来跟大家分享下这个有趣的项目经历。这个系统已经可以投入使用啦,而…

Openwork 入门指南:开源 AI 桌面助手快速上手

Openwork 入门指南:开源 AI 桌面助手快速上手 最近 Openwork 确实很火!它是一个完全开源的 AI 桌面代理工具,被誉为 Claude Cowork(Anthropic 的付费协作功能)的免费平替。项目在 2026 年 1 月中旬发布后迅速爆火&…

边缘 AI 入门系列(一):Jetson Nano 深度学习环境搭建与 YOLOv5 部署

文章目录 一、概述:Jetson Nano深度学习环境构建全景图 为什么选择Jetson Nano? 环境配置的挑战与解决思路 二、部署流程:从系统刷机到AI框架配置的完整路径 2.1 Jetson Nano刷机流程 2.1.1 刷机前的准备工作 2.1.2 系统镜像选择 2.1.3 刷机操作步骤 2.1.4 刷机常见问题解决…

python的变量名变量名称空间

一、变量的三要素 1.变量名 2.赋值运算符 3.变量值二、声明一个变量的过程 X hello 1.在内存里面开辟了一个变量名X的名称空间 2.在内存里面创建了一个字符串hello 3.将字符串的内存地址和变量名X关联三、内存堆区和栈区 1.变量名称放在内存的栈区 2.变量的值的内存地址放在内…

大数据技术的基于Python+Selenium的招聘信息智能采集与分析系统开题任务书

目录摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!摘要 随着互联网招聘信息的爆炸式增长,传统的人工采集与分析方式效率低下且难以满足精准化需求。基于大数据技术构建的招…

CVE-2025–24813:Apache Tomcat 路径等价性漏洞解析与赏金通告

免责声明:本文档仅用于教育目的。未经授权利用系统是非法行为,将受到法律制裁。保持道德,遵守法律,负责任地进行安全研究。 感谢大家阅读。享受快乐、符合道德的黑客技术! 如果你喜欢我的工作或者需要利用脚本&#xf…

提升多尺度检测能力:YOLOv8 中 P2 小目标与 P6 超大目标检测头添加方法

蓝色线条为原模型,绿色线条为优化后的小目标模型,map提升4.5! 我们先理解什么叫做上下采样、再理解要选择哪一层作为检测头和分辨率越大检测目标越小等问题,然后再来添加小目标检测头就会容易理解很多! 原理介绍 一、上采样(Upsampling) 1. 定义 上采样是指将特征图…

TensorRT INT8 部署实战:CMake 工程化 + RTSP 推流的指定区域行人检测与人群密度分析

往期文章 RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049 RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753 RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404 以及深度学习部署工…

BEV感知十年演进

你问 BEV 感知十年演进,其实已经不是在问一种“感知表示形式”的未来,而是在问: 当系统把世界“压扁成一张俯视图”之后,它还能不能对真实世界的风险负责。 下面这份内容,不是 BEV 从 LSS 到 Occupancy 的技术路线回顾…

【Coze 2.0深度技术解析】从AI辅助工具到主动协作伙伴的技术实现

文章目录目录引言一、Coze 2.0的升级背景:解决传统AI Agent的三大技术痛点二、Coze 2.0四大核心技术能力深度解析2.1 AgentSkills:行业经验的数字化封装,让通用AI快速“专精”2.2 AgentPlan:目标驱动的自主规划,实现长…

YOLOv8 集成 CBAM 实战:通道注意力(CAM)与空间注意力(SAM)详解

YOLOv8 效能再升级:深度解析与集成 CBAMBlock (Convolutional Block Attention Module) 文章目录 YOLOv8 效能再升级:深度解析与集成 CBAMBlock (Convolutional Block Attention Module) 1. 探索注意力机制的奥秘 2. CBAM (Convolutional Block Attention Module) 原理与结构…

RK3588 高分辨率多摄像头系统优化实战:48MP 单摄与双摄分时复用方案解析

文章目录 前言 一、RK3588摄像头硬件资源深度解析 1.1 MIPI PHY硬件架构 1.2 软件通路映射关系详解 1.3 关键配置要点 二、双ISP合成技术深度剖析 2.1 高分辨率处理的技术挑战 2.2 双ISP合成的系统配置 2.3 虚拟ISP节点的重要作用 三、48M分辨率单摄系统的完整实现 3.1 OV50C40…

运动控制算法十年演进

你问 运动控制算法十年演进,其实已经不是在问 “PID / MPC / 学习控制谁更强”, 而是在问一个更根本的问题: 当系统开始长期、无人、在真实世界中运动—— 谁来保证“它还能停得下来、退得回去、不会慢慢把自己逼进死角”? 下面这…

从 Transformer 到 Mamba:YOLOv8 中 VSSBlock(MambaLayer)的核心原理解析

文章目录 Mamba-YOLOv8的核心:VSSBlock (MambaLayer) 的深度解析 🧬 VSS Block 的内部构造与数据流 🏞️ SS2D (2D-Selective-Scan) 模块的魔力 ✨ 总结 MambaLayer 的强大之处 YOLOv8 改进步骤:Mamba 融合实战教程 🚀 整体思路概览:Mamba如何融入YOLOv8? 步骤 1: 创…

资源监控体系:利用npu-smi实现硬件状态实时可视化

在高性能计算领域,盲目运行模型无异于蒙眼狂奔。无论是排查 DeepSeek 的性能瓶颈,还是保障生产环境的稳定性,掌握 NPU 的实时状态是必修课。npu-smi 是昇腾系统自带的命令行工具,对标 NVIDIA 的 nvidia-smi,但其功能覆…

深度学习中的超分辨率重建(SR):经典模型与最新方法详解

文章目录 一、插值方法分类与数学原理 1.1 最近邻插值(Nearest-Neighbor Interpolation) 1.2 双线性插值(Bilinear Interpolation) 1.3 双三次插值(Bicubic Interpolation) 1.4 Lanczos插值 二、MATLAB实现与效果对比 三、方法性能对比 四、传统插值方法的局限性 结论与展…

伺服电机十年演进

你问 伺服电机十年演进,其实已经不是在问 “转速更高、扭矩更大、效率更好”, 而是在问一个更底层的问题: 当机器人、自动驾驶、工业系统开始长期、无人、连续地“动”, 谁来保证“它的每一次力输出,都是被允许的”&am…

机械臂十年演进

你问 机械臂十年演进,其实已经不是在问 “自由度更多、精度更高、速度更快”, 而是在问一个更根本的问题: 当机械臂开始离开围栏、走向人类、长期自主地“动手”, 谁来保证——它知道什么时候不该动? 下面这份内容&…