论文阅读:OneRecMini

github仓库:https://github.com/AkaliKong/MiniOneRec
技术报告论文:https://arxiv.org/abs/2510.24431

找了一个论文阅读辅助工具:https://www.alphaxiv.org/

MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation

摘要

做了一个框架:SID构建(RQVAE)+SFT(0.5b~7b)+RL(受限解码+混合奖励)
实验证明了llm的Scaling特点,模型越大越好。
从图上来看,对齐SID-text是挺重要的。

Introduction/Related Work 略

Modeling

框架:
1、tokenizer(RQVAE)
2、LLM-text 对齐(利用llm的世界知识)
3、SFT next token prediction
4、RL(GRPO)

Task

序列推荐任务
先分词:一个用户u,有一个时间顺序的历史交互商品序列Hu=[i1,i2, …, iT]。每个商品iti_tit通过RQVAE编码为一个3层的SID{c0it,c1it,c2it}\{c_0^{i_t},c_1^{i_t},c_2^{i_t} \}{c0it,c1it,c2it}
后训练:LLMπθ\pi_{\theta}πθ,读取历史序列预测下一个商品。推理的时候k beams search。

Item Tokenization

标准RQVAE
为了避免码本坍缩使用第一个训练batch的k-means中心作为codebook的初始化码本【我直接聚类也很有用】
论文里没写,但是我看代码里有Sinkhorn-Knopp algorithm代码(LC-Rec也做了),这也是缓解码本坍缩的trick。

Align with LLM

对齐LLM世界知识和SID信号。
任务一:序列推荐任务
任务二:对齐SID和文本描述任务。

实际上在github里更新了新技术:
GPR-inspired SFT with Value-Aware Fine-Tuning (VAFT): implements weighted loss based on simulated item value
https://github.com/AkaliKong/MiniOneRec/blob/main/sft_gpr.py
相当于每条样本有一个数值表示好坏,然后对损失做加权。
但是没有实验结果,不知道好不好。
TODO: 做实验比较结果

RL with verifiable rewards (RLVR)

1、混合动态采样(SID空间小,容易采样到相同的SID)
2、稀疏排序信号

混合动态采样采样:
论文说了两个方法。方法1是over-samplef疯狂采,然后构造一个SID样本尽量不重复的集合。方法2是beam search。它的最终方法是beam search,没用上方法1。

稀疏排序信号
用NDCG作为奖励 如果是正确商品,分数再加1

训练

商品描述:Qwen3-Embedding-4B编码
分词器:RQVAE 单卡训练,batchsize=20480,lr=1e-3,epochs=10000
SFT:AdamW,Qwen2.5-Instruct。8卡训练,单卡batchsize=128,10 epochs+early stop(patience=1),lr=3e-4,cosine decay。
RL:GRPO,2epoch,KL权重β不变=0.1,lr=1e-5,batchsize=512
推理:beam search width=16

评估

亚马逊数据集Office+Industrial。hitrate+NDCG作为指标。

1、Scaling:训练+评估损失:模型越大损失越小
2、baseline对比:LLM系列和非LLM系列对比,说明世界知识的重要;Ours和LLM系列对比,说明RL的重要

Transferablity

SID pattern discovery实验:在Industrial上训在Office上评估
证明RL的有效
没做SFT是因为SFT很容易领域过拟合影响迁移。

消融

language-SID的重要性:
1、不做language-SID对齐
2、做language-SID对齐,但不SFT 推荐任务,只在RL上做推荐任务
3、SFT只做推荐任务,RL做language-SID对齐(那还做推荐任务吗?没说清楚)

采样:
1、直接topk
2、采1.5倍budget+筛选
3、beamsearch:最好

奖励设计:
1、01奖励
2、SASRec模型 logits 【效果很差 reward hacking,SASRec协同信息和推荐信息不一致】
3、NDCG

是否预训练:【还是预训练的好】

代码

sft_gpr

https://github.com/AkaliKong/MiniOneRec/blob/main/sft_gpr.py
GPR-inspired SFT with Value-Aware Fine-Tuning (VAFT): implements weighted loss based on simulated item value

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1186136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BAAI/bge-m3如何验证效果?MTEB基准测试复现实战教程

BAAI/bge-m3如何验证效果?MTEB基准测试复现实战教程 1. 引言:语义相似度评估的工程价值 在构建现代AI系统,尤其是检索增强生成(RAG)架构时,语义相似度计算是决定召回质量的核心环节。传统的关键词匹配方法…

BGE-M3实战案例:学术论文查重系统搭建详细步骤

BGE-M3实战案例:学术论文查重系统搭建详细步骤 1. 引言 1.1 学术查重的痛点与挑战 在高校和科研机构中,学术论文的原创性审查是保障学术诚信的重要环节。传统查重工具(如基于关键词匹配或n-gram重叠)往往只能识别字面重复&…

Qwen3-8B vs DeepSeek实测:云端GPU 2小时低成本对比

Qwen3-8B vs DeepSeek实测:云端GPU 2小时低成本对比 你是不是也遇到过这种情况:手头有个创业项目急需上马,想用大模型做智能客服或内容生成,但本地显卡只有4G显存,连8B级别的模型都跑不动?一启动就OOM&…

使用agentscope访问注册在nacos的A2Aagent和MCP服务

参考资料https://doc.agentscope.io/zh_CN/tutorial/task_a2a.htmlhttps://strandsagents.com/latest/documentation/docs/user-guide/concepts/multi-agent/agent-to-agent/部署litellm代理平台 为了便于测试和控制在…

Keil5 Debug怎么使用?通俗解释核心要点功能

Keil5 Debug怎么用?手把手带你玩转嵌入式调试核心技能你有没有过这样的经历:代码烧进STM32,板子一上电,程序却“卡死”了——LED不闪、串口没输出,连个报错都没有。你只能靠猜:“是不是中断没进来&#xff…

SGLang一键部署方案:免环境配置快速启动教程

SGLang一键部署方案:免环境配置快速启动教程 SGLang-v0.5.6 是当前稳定版本,具备完整的推理优化能力与结构化生成支持。本文将围绕该版本,详细介绍如何通过一键部署方式快速启动 SGLang 服务,无需繁琐的环境配置,帮助…

从安装到运行,YOLO11全流程实操记录

从安装到运行,YOLO11全流程实操记录 1. 引言:为什么选择YOLO11? 随着计算机视觉技术的快速发展,实时目标检测在自动驾驶、工业质检、安防监控等场景中扮演着越来越重要的角色。Ultralytics推出的YOLO11作为YOLO系列的最新迭代版…

Hunyuan部署卡在加载?safetensors权重优化教程

Hunyuan部署卡在加载?safetensors权重优化教程 1. 背景与问题定位 在实际部署 Tencent-Hunyuan/HY-MT1.5-1.8B 翻译模型时,许多开发者反馈:模型加载过程卡顿、内存占用过高、启动时间过长,甚至出现 OOM(Out of Memor…

Rembg批量抠图技巧:200张图云端3小时搞定

Rembg批量抠图技巧:200张图云端3小时搞定 你是不是也遇到过这样的情况?换季了,网店要更新商品图,上百张产品照等着换背景。找外包吧,报价高得吓人;自己用PS一张张抠,头发丝、蕾丝边、透明材质全…

零基础入门:Paraformer-large语音识别模型快速上手步骤详解

零基础入门:Paraformer-large语音识别模型快速上手步骤详解 1. 引言 随着语音技术的快速发展,自动语音识别(ASR)已广泛应用于会议记录、客服系统、内容创作等场景。然而,许多开发者在实际落地时面临环境配置复杂、模…

通义千问3-14B省钱部署方案:单卡双模式,GPU按需使用

通义千问3-14B省钱部署方案:单卡双模式,GPU按需使用 1. 引言:为何选择 Qwen3-14B? 在当前大模型推理成本高企的背景下,如何以最低硬件投入获得接近 30B 级别性能的推理能力,成为中小型团队和独立开发者的…

音频音量过小影响识别?Speech Seaco Paraformer前置放大方案

音频音量过小影响识别?Speech Seaco Paraformer前置放大方案 1. 问题背景与技术挑战 在使用语音识别系统时,音频输入质量直接影响最终的识别准确率。尽管 Speech Seaco Paraformer 模型基于阿里 FunASR 构建,在中文语音识别任务中表现出色&…

阿里通义轻量模型:CosyVoice-300M Lite技术详解

阿里通义轻量模型:CosyVoice-300M Lite技术详解 1. 引言 1.1 背景与挑战 随着语音合成(Text-to-Speech, TTS)技术在智能客服、有声阅读、虚拟助手等场景的广泛应用,对模型部署效率和资源消耗的要求日益提高。传统TTS模型往往依…

门电路基础入门必看:数字逻辑的起点详解

门电路:数字世界的“原子”——从零开始读懂硬件逻辑你有没有想过,为什么按下键盘的一个键,屏幕上就能显示出一个字母?或者,手机里的处理器是如何在一瞬间完成数百万次计算的?答案藏在一个看似简单却无比强…

Qwen3-Reranker-0.6B实战案例:云端10分钟上手,2块钱低成本验证

Qwen3-Reranker-0.6B实战案例:云端10分钟上手,2块钱低成本验证 你是不是也遇到过这样的情况?作为产品经理,看到竞品在搜索结果排序、推荐系统或问答匹配上用了“重排序”技术,用户体验明显提升,心里也开始…

serialport数据封装与解析方法:操作指南与代码示例

串口通信实战:如何优雅地封装与解析数据帧?在嵌入式开发的世界里,serialport(串口)是最古老却也最可靠的通信方式之一。无论是调试日志输出、传感器读取,还是工业PLC控制,你几乎绕不开它。但你有…

通义千问2.5实战指南:从单机部署到集群扩展详解

通义千问2.5实战指南:从单机部署到集群扩展详解 1. 引言 随着大语言模型在自然语言理解、代码生成和结构化数据处理等领域的广泛应用,高效部署与可扩展性成为工程落地的关键挑战。Qwen2.5 系列作为通义千问最新一代模型,覆盖从 0.5B 到 720…

轻量级BERT模型应用:移动端部署实战

轻量级BERT模型应用:移动端部署实战 1. 引言 随着自然语言处理技术的不断演进,BERT(Bidirectional Encoder Representations from Transformers)已成为语义理解任务的核心架构之一。然而,原始BERT模型通常参数庞大、…

OrCAD Capture集成Pspice安装操作指南

从零构建电路仿真环境:OrCAD Capture集成Pspice实战指南 你有没有遇到过这种情况?花了一个小时画好了一个精密的LDO原理图,信心满满地点开“仿真”按钮——结果弹出一条红色警告:“Pspice not available” 或者 “License checko…

OpenCV DNN模型实战对比:AI读脸术与PyTorch方案效率评测

OpenCV DNN模型实战对比:AI读脸术与PyTorch方案效率评测 1. 技术背景与选型动因 在计算机视觉领域,人脸属性分析是一项兼具实用性和挑战性的任务。随着边缘计算和轻量化部署需求的增长,如何在资源受限的环境中实现高效、准确的性别与年龄识…