用fft npainting lama做了个去水印工具,附完整过程

用fft npainting lama做了个去水印工具,附完整过程

1. 项目背景与技术选型

1.1 图像修复的现实需求

在日常工作中,我们经常需要处理带有水印、文字或不需要物体的图片。传统图像编辑方式依赖手动涂抹和克隆图章工具,效率低且难以保证自然融合效果。随着深度学习的发展,基于AI的图像修复技术(Inpainting)已成为解决此类问题的核心方案。

本文介绍如何使用fft npainting lama镜像构建一个高效的图像修复系统,重点实现去水印、移除物体、修复瑕疵三大功能,并分享完整的部署流程与优化技巧。

1.2 技术方案选择:为什么是 LAMA?

在众多图像修复模型中,LAMA(Large Mask Inpainting) 凭借其对大区域缺失内容的优秀重建能力脱颖而出。相比传统的PatchMatch或Telea算法,LAMA 基于傅里叶卷积(Fast Fourier Transform Convolution)设计,在频域进行特征提取与生成,显著提升了纹理连续性和结构合理性。

核心优势总结

  • 支持大面积遮挡修复
  • 利用FFT捕捉全局上下文信息
  • 对复杂背景(如建筑、自然场景)填充更真实
  • 推理速度快,适合WebUI集成

本项目使用的镜像是由“科哥”二次开发的fft npainting lama重绘修复图片移除图片物品版本,已预配置环境、模型权重及可视化界面,极大降低了部署门槛。


2. 系统部署与环境启动

2.1 镜像准备与运行

该镜像可在支持容器化部署的AI平台一键拉取,典型路径如下:

# 进入项目目录 cd /root/cv_fft_inpainting_lama # 启动Web服务 bash start_app.sh

成功启动后输出提示:

===================================== ✓ WebUI已启动 访问地址: http://0.0.0.0:7860 本地访问: http://127.0.0.1:7860 按 Ctrl+C 停止服务 =====================================

此时可通过浏览器访问http://服务器IP:7860打开图形化操作界面。

2.2 目录结构说明

路径功能
/root/cv_fft_inpainting_lama/app.py主服务入口
/root/cv_fft_inpainting_lama/static/前端资源文件
/root/cv_fft_inpainting_lama/models/模型权重存放
/root/cv_fft_inpainting_lama/outputs/输出结果保存

所有修复后的图像将自动保存至outputs/目录,命名格式为outputs_YYYYMMDDHHMMSS.png,便于追溯。


3. 核心功能使用详解

3.1 界面布局与交互逻辑

系统采用双栏式设计,左侧为编辑区,右侧为结果展示区:

┌──────────────────────┬──────────────────────────────┐ │ 🎨 图像编辑区 │ 📷 修复结果 │ │ │ │ │ [图像上传/编辑] │ [修复后图像显示] │ │ │ │ │ [🚀 开始修复] │ 📊 处理状态 │ │ [🔄 清除] │ [状态信息显示] │ └──────────────────────┴──────────────────────────────┘
  • 画笔工具:用于标记需修复区域(白色表示mask)
  • 橡皮擦工具:修正误标区域
  • 撤销按钮:回退上一步操作(部分浏览器支持Ctrl+Z)

3.2 完整操作流程

步骤一:上传原始图像

支持三种方式:

  • 点击上传区域选择文件
  • 拖拽图像到指定区域
  • 使用 Ctrl+V 粘贴剪贴板中的图像

推荐格式:PNG(无损压缩)、JPG(通用性好)

步骤二:标注待修复区域
  1. 选择画笔工具
  2. 调整画笔大小以匹配目标区域
  3. 在水印或物体上均匀涂抹白色
  4. 可使用橡皮擦微调边界

关键提示:建议略微扩大标注范围,避免边缘残留。系统会自动羽化过渡区域,提升融合自然度。

步骤三:执行修复任务

点击"🚀 开始修复"按钮,后台将执行以下流程:

# 伪代码示意:LAMA修复核心流程 def inpaint(image, mask): # 1. 将图像转换为张量并归一化 img_tensor = preprocess(image) # 2. 应用FFT卷积层提取频域特征 freq_features = fft_convolve(img_tensor) # 3. 输入生成器网络预测缺失内容 predicted = generator(freq_features, mask) # 4. 后处理:颜色校正 + 边缘平滑 result = postprocess(predicted) return result

处理时间参考:

  • 小图(<500px):约5秒
  • 中图(500–1500px):10–20秒
  • 大图(>1500px):20–60秒
步骤四:查看与下载结果

修复完成后,右侧实时显示结果图像,状态栏提示:

完成!已保存至: /root/cv_fft_inpainting_lama/outputs/outputs_20260105142312.png

用户可通过FTP、SCP等方式从服务器下载结果。


4. 实际应用场景测试

4.1 场景一:去除半透明水印

挑战点:水印常叠加高斯模糊或透明度,直接删除易留下色差。

解决方案

  1. 用中等画笔完整覆盖水印区域
  2. 若首次修复有色偏,可重复一次操作
  3. 结合“分层修复”策略逐步优化

实测效果:对于90%透明度的文字水印,两次修复即可实现无缝消除。

4.2 场景二:移除前景干扰物体

例如照片中突然闯入的路人、电线杆等。

操作要点

  • 精确描绘物体轮廓
  • 对复杂背景(如树叶、砖墙)适当扩大mask
  • 利用周围纹理一致性实现自然填充

实测表现:在城市街景图中移除小型广告牌,重建纹理连贯,无明显拼接痕迹。

4.3 场景三:修复老照片划痕

针对扫描的老照片存在划痕、污渍等问题。

技巧建议

  • 使用小画笔逐段标注划痕
  • 分批修复,避免一次性处理过多区域
  • 保持原图分辨率,减少压缩损失

输出质量:修复后细节保留良好,肤色过渡自然,适用于家庭影像数字化。

4.4 场景四:清除文档中的敏感文字

适用于合同、证件等需要脱敏处理的场景。

注意事项

  • 大段文字建议分块处理
  • 避免跨行一次性涂抹,防止结构错乱
  • 文字密集区优先使用较小笔触

适用性验证:英文印刷体、中文宋体均可有效清除,背景纸张纹理还原度高。


5. 性能优化与高级技巧

5.1 提升修复质量的关键策略

技巧描述
边缘扩展法标注时超出目标区域3–5像素,利用模型边缘融合机制降低接缝感
多次迭代修复先粗略去除主体,再精细调整周边,逐步逼近理想效果
分层处理多物体移除时,每修复一个即保存中间结果,避免相互干扰

5.2 常见问题与应对方案

问题现象可能原因解决方法
修复区域颜色偏暗输入图像BGR通道未正确转换确保前端传入RGB格式
边缘出现锯齿mask边界过于生硬扩大标注范围,启用自动羽化
处理卡顿或超时图像分辨率过高建议缩放至2000px以内再处理
无反应但无报错浏览器兼容性问题更换Chrome/Firefox尝试

5.3 快捷操作汇总

  • Ctrl + V:粘贴剪贴板图像
  • Ctrl + Z:撤销(视浏览器支持情况)
  • 鼠标滚轮:画布缩放(若启用)
  • 右键单击:取消当前绘制动作

6. 总结

通过本次实践,我们成功部署并应用了基于fft npainting lama的图像修复系统,实现了高效、高质量的去水印与物体移除功能。整个流程无需编写代码,仅通过WebUI即可完成专业级图像编辑任务。

核心价值提炼

  1. 工程落地性强:镜像封装完整,开箱即用,适合非算法人员快速接入。
  2. 修复质量优异:得益于FFT频域建模能力,对大块缺失区域重建更具结构性。
  3. 操作灵活便捷:支持多种输入方式与精细化控制,满足多样化业务需求。
  4. 可扩展潜力大:源码开放,便于后续定制训练私有数据集,适配特定场景。

未来可进一步探索方向包括:

  • 集成自动检测模块(如OCR识别水印位置)
  • 支持批量处理模式
  • 添加风格保持约束,避免内容漂移

只要合理使用,这类AI修复工具不仅能提升工作效率,还能在数字内容创作、档案修复等领域发挥重要作用。

7. 参考资料与技术支持

  • 项目作者:科哥
  • 联系方式:微信 312088415
  • 版权声明:本项目承诺永久开源使用,但须保留原作者信息

获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1186040.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BGE-Reranker-v2-m3代码实例:query-doc打分函数实现详解

BGE-Reranker-v2-m3代码实例&#xff1a;query-doc打分函数实现详解 1. 技术背景与核心价值 在当前的检索增强生成&#xff08;RAG&#xff09;系统中&#xff0c;向量数据库通过语义相似度进行初步文档召回已成为标准流程。然而&#xff0c;基于双编码器&#xff08;Bi-Enco…

Z-Image-ComfyUI新手避坑指南,少走90%弯路

Z-Image-ComfyUI新手避坑指南&#xff0c;少走90%弯路 对于刚接触 Z-Image-ComfyUI 的开发者和AI爱好者来说&#xff0c;尽管官方提供了“一键启动”的便捷方式&#xff0c;但在实际部署与使用过程中仍存在诸多隐藏陷阱。本文基于真实项目经验&#xff0c;系统梳理从环境配置、…

高效图片旋转判断:利用云端GPU快速搭建OpenCV环境

高效图片旋转判断&#xff1a;利用云端GPU快速搭建OpenCV环境 你是否也遇到过这样的情况&#xff1f;团队接了一个图像处理的项目&#xff0c;需要快速判断一张图片有没有被旋转、旋转了多少度&#xff0c;甚至要自动校正方向。但问题是——没人熟悉OpenCV环境配置&#xff0c…

开源大模型部署趋势一文详解:BGE-Reranker-v2-m3成RAG标配

开源大模型部署趋势一文详解&#xff1a;BGE-Reranker-v2-m3成RAG标配 1. 引言&#xff1a;RAG系统演进中的关键拼图 随着大语言模型&#xff08;LLM&#xff09;在生成能力上的不断突破&#xff0c;检索增强生成&#xff08;Retrieval-Augmented Generation, RAG&#xff09…

Glyph显存占用过高?动态批处理优化部署案例分享

Glyph显存占用过高&#xff1f;动态批处理优化部署案例分享 1. 技术背景与问题提出 随着大模型在多模态任务中的广泛应用&#xff0c;长文本上下文的处理成为关键挑战。传统基于Token的上下文扩展方式在面对超长输入时&#xff0c;面临显存占用高、推理延迟大等问题。为应对这…

通义千问3-4B代码生成教程:云端开发环境,学生党福音

通义千问3-4B代码生成教程&#xff1a;云端开发环境&#xff0c;学生党福音 你是不是也遇到过这样的情况&#xff1f;计算机专业的编程作业越来越“卷”&#xff0c;老师要求写个爬虫、做个数据分析&#xff0c;甚至还要实现一个简单的AI功能。可你在学校机房只能用普通电脑&a…

Heygem数字人系统实操手册:音频+视频口型同步技术详解

Heygem数字人系统实操手册&#xff1a;音频视频口型同步技术详解 1. 系统简介与应用场景 HeyGem 数字人视频生成系统是一款基于人工智能的音视频合成工具&#xff0c;专注于实现高精度的音频驱动口型同步&#xff08;Lip Sync&#xff09;。该系统通过深度学习模型分析输入音…

北京宠物训练哪家好?2026年北京宠物训练正规专业基地 - 品牌2025

对于养宠家庭而言,优质的宠物训练与寄养服务,是解决毛孩子行为困扰、保障出行安心的关键。选对机构不仅能纠正宠物不良习惯,更能让它们在专业照料下收获快乐与成长。在北京众多机构中,靠谱的选择需兼顾专业性、环境…

设计师专属:Qwen3-14B创意生成,无需懂技术即刻体验

设计师专属&#xff1a;Qwen3-14B创意生成&#xff0c;无需懂技术即刻体验 你是不是也遇到过这样的情况&#xff1f;作为平面设计师&#xff0c;脑子里有无数创意火花&#xff0c;但一到执行阶段就卡壳&#xff1a;文案写不出来、配色拿不准、版式设计反复修改还是不满意。更别…

北京狗狗寄养哪家好?狗狗寄养、狗狗训练服务好的机构 - 品牌2025

养宠家庭日益增多,北京狗狗寄养的需求愈发旺盛,宠主在选择时既关注机构是否专业正规,也看重场地条件与服务质量。2026年市场上机构良莠不齐,本文将聚焦优质机构,先重点介绍口碑出众的北京宠爱到家宠物寄养训练中心…

[OS] CentOS 操作系统的替代方案 [转]

概述在互联网企业,对于服务器操作系统的选择上,不难发现,大家都更多倾向于 CentOS 系统。CentOS 是基于 Red Hat Enterprise Linux(RHEL)源代码编译而成的,经过了大量的测试和稳定性验证,具有高度的稳定性与可靠…

BGE-Reranker-v2-m3推理成本太高?轻量化部署优化指南

BGE-Reranker-v2-m3推理成本太高&#xff1f;轻量化部署优化指南 1. 背景与挑战&#xff1a;高精度重排序的代价 BGE-Reranker-v2-m3 是由智源研究院&#xff08;BAAI&#xff09;推出的高性能语义重排序模型&#xff0c;专为提升检索增强生成&#xff08;RAG&#xff09;系统…

移动端能用吗?fft npainting lama响应式界面初探

移动端能用吗&#xff1f;fft npainting lama响应式界面初探 1. 技术背景与问题提出 随着移动设备性能的持续提升&#xff0c;越来越多的AI图像处理任务开始尝试在移动端直接运行。传统的图像修复工具多依赖桌面级WebUI或专业软件&#xff0c;用户必须在PC端完成操作&#xf…

本地化语音识别方案|FunASR + speech_ngram_lm_zh-cn镜像全解析

本地化语音识别方案&#xff5c;FunASR speech_ngram_lm_zh-cn镜像全解析 1. 背景与技术选型 1.1 语音识别的本地化需求 随着AI应用在企业级场景中的深入&#xff0c;越来越多项目对数据隐私、响应延迟和离线可用性提出了更高要求。传统的云端语音识别服务虽然准确率高&…

古籍数字化不求人:Mistral OCR+云端GPU自助方案

古籍数字化不求人&#xff1a;Mistral OCR云端GPU自助方案 你是不是也遇到过这样的情况&#xff1f;单位里一堆泛黄的老档案、手写的县志、模糊的扫描件&#xff0c;急需电子化保存&#xff0c;但找专业公司做OCR&#xff08;文字识别&#xff09;服务&#xff0c;报价动辄上万…

2026年朝阳宠物寄养哪家好?朝阳宠物寄养哪家条件和服务比较好?机构名单排行 - 品牌2025

宠物寄养的核心诉求,在于为毛孩子找到安全、舒适且专业的临时家园。尤其在2026年朝阳地区宠物寄养需求持续攀升的背景下,家长们挑选机构时,既看重硬件条件与服务细节,更关注机构是否正规专业。以下为大家梳理几家口…

北京宠物寄养哪家好?2026年北京宠物寄养专业正规基地 - 品牌2025

随着养宠人群日益增多,宠物寄养需求也持续攀升,尤其是在北京这样的一线城市,选择一家好的寄养机构成为主人出行前的重中之重。靠谱的寄养机构不仅能提供舒适的居住环境,更能以专业服务保障毛孩子的身心健康,既让主…

Qwen轻量级AI对比:0.5B模型在实际业务中的表现

Qwen轻量级AI对比&#xff1a;0.5B模型在实际业务中的表现 1. 引言 随着大语言模型&#xff08;LLM&#xff09;在各类智能应用中广泛落地&#xff0c;如何在资源受限的环境中实现高效、稳定的推理成为工程实践中的关键挑战。尤其是在边缘设备或仅配备CPU的服务器场景下&…

2026年北京狗狗训练哪家好?北京狗狗训练专业正规机构TOP名单精选 - 品牌2025

养宠家庭难免会被狗狗拆家、爆冲、乱吠叫等问题困扰,挑选一家专业正规、条件优良的狗狗训练机构,成为不少北京宠主的刚需。优质的机构不仅能纠正狗狗不良行为,还能提供安心的寄养环境,让毛孩子在科学引导下养成好习…

5个开源艺术生成工具推荐:AI 印象派艺术工坊镜像免配置实战测评

5个开源艺术生成工具推荐&#xff1a;AI 印象派艺术工坊镜像免配置实战测评 1. 引言 在数字艺术与人工智能交汇的今天&#xff0c;如何将普通照片转化为具有大师风格的艺术作品&#xff0c;已成为图像处理领域的重要应用场景。传统基于深度学习的风格迁移方法虽然效果惊艳&am…