GPEN模型微调入门:自定义数据集训练步骤详解教程

GPEN模型微调入门:自定义数据集训练步骤详解教程

1. 镜像环境说明

本镜像基于GPEN人像修复增强模型构建,预装了完整的深度学习开发环境,集成了推理及评估所需的所有依赖,开箱即用。用户无需手动配置复杂的运行时依赖,可直接进入模型微调与训练阶段。

组件版本
核心框架PyTorch 2.5.0
CUDA 版本12.4
Python 版本3.11
推理代码位置/root/GPEN

主要依赖库:

  • facexlib: 用于人脸检测与对齐
  • basicsr: 基础超分框架支持
  • opencv-python,numpy<2.0,datasets==2.21.0,pyarrow==12.0.1
  • sortedcontainers,addict,yapf

所有依赖均已通过 Conda 环境管理工具打包至torch25虚拟环境中,确保版本兼容性和运行稳定性。


2. 快速上手

2.1 激活环境

在使用 GPEN 模型前,请先激活预设的 Python 环境:

conda activate torch25

该环境已包含所有必要的深度学习库和工具链,避免因版本冲突导致运行失败。

2.2 模型推理 (Inference)

进入项目主目录并执行推理脚本:

cd /root/GPEN
场景 1:运行默认测试图
python inference_gpen.py

此命令将加载内置测试图像(Solvay_conference_1927.jpg),输出结果为output_Solvay_conference_1927.png

场景 2:修复自定义图片
python inference_gpen.py --input ./my_photo.jpg

输入文件路径由--input参数指定,输出自动保存为output_my_photo.jpg

场景 3:自定义输入输出文件名
python inference_gpen.py -i test.jpg -o custom_name.png

支持通过-i-o分别设置输入与输出路径,便于集成到自动化流程中。

注意:所有推理结果将默认保存在项目根目录下,建议定期备份或重定向输出路径以避免覆盖。


3. 已包含权重文件

为保障离线可用性与快速启动能力,镜像内已预下载官方发布的预训练权重文件,存储于 ModelScope 缓存路径:

~/.cache/modelscope/hub/iic/cv_gpen_image-portrait-enhancement

该目录包含以下关键组件:

  • 生成器权重(Generator):负责高保真人脸细节重建
  • 人脸检测模型:基于 RetinaFace 实现精准面部定位
  • 关键点对齐模块:提升多角度人像处理鲁棒性

若首次运行未触发自动下载,请检查网络连接或手动验证缓存完整性。


4. 自定义数据集准备与格式规范

4.1 数据配对原则

GPEN 采用监督式训练策略,要求每条样本包含一对图像:

  • 高质量图像(HR):清晰、无压缩失真、分辨率不低于目标尺寸
  • 低质量图像(LR):对应 HR 图像经人工降质处理后的版本

推荐使用 FFHQ 或 CelebA-HQ 等公开高清人脸数据集作为原始 HR 数据源。

4.2 低质量图像生成方法

由于真实低质图像难以获取且缺乏精确配对关系,通常采用合成方式生成 LR 图像。推荐以下两种主流方案:

方法一:使用 RealESRGAN 进行退化增强
from basicsr.data.degradations import random_add_gaussian_noise, random_mixed_kernels import cv2 import numpy as np def degrade_image(hr_path, lr_save_path): img = cv2.imread(hr_path) # 添加模糊核 kernel = random_mixed_kernels( ['iso', 'aniso'], [0.7, 0.3], 4, 2, 0.5, [-0.5, 0.5], [-1, 1], noise_range=None ) img = cv2.filter2D(img, -1, kernel) # 添加噪声 img = random_add_gaussian_noise(img, sigma_range=[1, 30]) # 下采样模拟低分辨率 h, w = img.shape[:2] img = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_LINEAR) img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR) cv2.imwrite(lr_save_path, img) # 示例调用 degrade_image('./hr_images/face_001.png', './lr_images/face_001.png')
方法二:使用 BSRGAN 工具链批量生成

BSRGAN 提供完整的图像退化管道,支持多种模糊核、JPEG 压缩、颜色扰动等操作,适合大规模数据构建。

# 安装 BSRGAN pip install bsrgan # 批量生成示例(伪代码) for hr_img in hr_dataset: lr_img = bsrgan.degrade(hr_img, scale=1, quality_factor=30) save_pair(hr_img, lr_img)

4.3 数据组织结构

建议按照如下目录结构组织训练数据:

datasets/ ├── train/ │ ├── hr/ │ │ └── img_001.png │ │ └── ... │ └── lr/ │ └── img_001.png │ └── ... └── val/ ├── hr/ └── lr/

并在配置文件中明确指定dataroot_gtdataroot_lq路径。


5. 微调训练全流程详解

5.1 训练脚本入口

进入代码目录后,使用train_gpen.py启动训练任务:

cd /root/GPEN python train_gpen.py --config configs/gpen_bilinear_512.py

5.2 配置文件修改要点

gpen_bilinear_512.py为例,需根据实际需求调整以下参数:

# 数据路径配置 'dataroot_gt': '/root/datasets/train/hr', # 高清图像路径 'dataroot_lq': '/root/datasets/train/lr', # 低清图像路径 'val_dataroot_gt': '/root/datasets/val/hr', 'val_dataroot_lq': '/root/datasets/val/lr', # 模型参数 'lq_size': 512, # 输入尺寸 'net_type': 'GPEN-Bilinear', # 可选:GPEN-Bilinear / GPEN-Deformable # 优化器设置 'lr_generator': 1e-4, # 生成器学习率 'lr_discriminator': 5e-5, # 判别器学习率 'total_iter': 100000, # 总迭代次数 # 日志与保存 'print_freq': 100, # 每N步打印loss 'save_checkpoint_freq': 5000, # 每N步保存一次模型 'path': { 'pretrain_network_g': None, # 若继续训练,填入预训练权重路径 }

提示:若从头开始训练,可留空pretrain_network_g;若进行微调,建议加载官方权重以加速收敛。

5.3 启动训练任务

CUDA_VISIBLE_DEVICES=0 python train_gpen.py --config configs/gpen_bilinear_512.py

训练过程中日志将实时输出至终端,并记录在./experiments目录下的时间戳子文件夹中。

5.4 训练过程监控

系统会自动生成以下内容用于监控:

  • Loss 曲线:保存在experiments/exp_name/logs
  • 可视化中间结果:每save_checkpoint_freq步保存一组对比图(LR vs Output vs GT)
  • Checkpoint 模型.pth格式权重文件,可用于后续推理或继续训练

6. 推理与评估最佳实践

6.1 使用微调后模型进行推理

将训练好的权重复制到推理目录,并更新inference_gpen.py中的模型路径:

model_path = './experiments/gpen_512_net_g.pth'

然后执行:

python inference_gpen.py --input ./test_low_quality.jpg --output ./restored_face.png

6.2 客观指标评估

使用evaluate.py脚本计算 PSNR 和 LPIPS 指标:

python evaluate.py \ --gt_folder /root/datasets/val/hr \ --sr_folder /root/datasets/val/output \ --metric psnr,lpips
  • PSNR:反映像素级重建精度
  • LPIPS:感知相似度,越低表示视觉效果越接近原图

7. 常见问题与解决方案

7.1 OOM(显存不足)问题

现象:训练时报错CUDA out of memory

解决方法

  • 降低batch_size至 1 或 2
  • 使用--fp16开启混合精度训练(需确认 CUDA 支持)
  • 减小输入分辨率(如从 512→256)

7.2 图像边缘伪影严重

原因:边界填充方式不当或退化模式不匹配

对策

  • 在数据预处理阶段增加随机裁剪扰动
  • 调整生成器中的归一化层类型(InstanceNorm → BatchNorm)
  • 引入边缘感知损失函数(Edge Loss)

7.3 模型过拟合

表现:训练 Loss 持续下降但验证集效果变差

缓解措施

  • 增加数据增强强度(颜色抖动、随机擦除)
  • 提前停止(Early Stopping)
  • 使用更小的学习率微调最后几万步

8. 总结

本文详细介绍了如何基于预置 GPEN 镜像完成从环境配置、数据准备、模型微调到推理评估的完整流程。核心要点包括:

  1. 环境即用性:镜像已集成 PyTorch 2.5 + CUDA 12.4 全套依赖,省去繁琐安装过程。
  2. 数据配对是关键:必须构建高质量的 HR-LR 成对数据集,推荐使用 RealESRGAN 或 BSRGAN 合成退化样本。
  3. 配置灵活可调:通过修改.py配置文件即可控制训练行为,支持学习率、尺寸、迭代数等全面定制。
  4. 训练稳定高效:结合日志与可视化监控,能够及时发现并解决常见问题如 OOM、伪影、过拟合等。

掌握上述流程后,开发者可快速将 GPEN 应用于特定场景的人像修复任务,如老照片复原、视频画质增强、移动端美颜等。


获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1185885.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Emotion2Vec+ Large时间戳命名规则:outputs目录管理最佳实践

Emotion2Vec Large时间戳命名规则&#xff1a;outputs目录管理最佳实践 1. 引言 1.1 项目背景与开发动机 在语音情感识别领域&#xff0c;Emotion2Vec Large 模型凭借其强大的多语言支持和高精度表现&#xff0c;已成为业界领先的解决方案之一。该模型基于大规模语音数据训练…

DeepSeek-R1功能测评:纯CPU推理的真实体验

DeepSeek-R1功能测评&#xff1a;纯CPU推理的真实体验 1. 引言&#xff1a;轻量级推理模型的现实需求 随着大语言模型在数学推导、代码生成和逻辑分析等复杂任务中的广泛应用&#xff0c;推理能力已成为衡量模型智能水平的核心指标。然而&#xff0c;主流高性能推理模型普遍依…

物理学家所理解的熵:从热力学、统计物理,到生成模型

导语从“万物终将腐朽”的熵增定律出发&#xff0c;本文系统梳理了熵在热力学与统计物理中的严格定义&#xff0c;展示其如何作为连接微观与宏观的核心桥梁&#xff0c;并进一步走向量子体系、非平衡过程&#xff0c;乃至生成式人工智能模型&#xff0c;揭示熵在理解复杂系统与…

三菱PLC非标设备程序打包(三十四个) 程序都已经实际设备上批量应用,程序成熟可靠,借鉴价值高...

三菱PLC非标设备程序打包&#xff08;三十四个&#xff09; 程序都已经实际设备上批量应用&#xff0c;程序成熟可靠&#xff0c;借鉴价值高&#xff0c;程序都有注释&#xff0c;用的三菱FX5U、FX3U和Q系列plc&#xff0c;包括非标转盘机、组装机、热熔机、压合机、包装机、CC…

三菱PLC新手项目程序(含触摸屏程序) 此程序已经实际设备上批量应用,程序成熟可靠,借鉴价值高

三菱PLC新手项目程序&#xff08;含触摸屏程序&#xff09; 此程序已经实际设备上批量应用&#xff0c;程序成熟可靠&#xff0c;借鉴价值高&#xff0c;程序简单几百步、有注释、非常适合用来三菱plc新手学习&#xff0c;包括三菱plc程序和触摸屏程序&#xff0c;用的三菱FX…

BGE-Reranker-v2-m3为何需要rerank?RAG流程优化实战解析

BGE-Reranker-v2-m3为何需要rerank&#xff1f;RAG流程优化实战解析 1. 引言&#xff1a;RAG系统中的“搜不准”问题与重排序的必要性 在当前主流的检索增强生成&#xff08;Retrieval-Augmented Generation, RAG&#xff09;架构中&#xff0c;向量数据库通过语义嵌入&#…

直接搞通信才是上位机的灵魂,界面那玩意儿自己后面加。OPC这玩意儿在工业现场就跟吃饭喝水一样常见,先说DA再搞UA,咱们玩点真实的

C# opc ua/da通信源代码示例&#xff0c;应用简单直接可使用。 工业上位机必备代码&#xff0c;不含界面&#xff0c;不含界面&#xff0c;不含界面&#xff0c;重要的事说三遍先上OPC DA的硬核代码&#xff0c;这玩意儿用Com组件得劲。注意引用Interop.OPCAutomation.dll&…

FX3U PLC控制器资料 尺寸:185*130m 主控芯片:STM32F103VCT6 电源...

FX3U PLC控制器资料 尺寸&#xff1a;185*130m 主控芯片&#xff1a;STM32F103VCT6 电源:DC24V 功能&#xff1a; 1、2路RS232、1路RS485、1路CAN通讯 2、24路独立TTL输出&#xff0c;PC817光耦隔离&#xff0c;继电器输出&#xff1b;20路独立TTL输入&#xff0c;PC817光耦隔离…

CAM++版权信息保留:开源协议合规使用注意事项

CAM版权信息保留&#xff1a;开源协议合规使用注意事项 1. 背景与问题提出 随着深度学习技术在语音处理领域的广泛应用&#xff0c;说话人识别系统逐渐成为智能安防、身份验证和语音交互等场景中的关键技术组件。CAM 是一个基于上下文感知掩码机制的高效说话人验证模型&#…

西门子S7-1200PLC伺服电机运动控制FB功能块 1.该FB块是我集成的一个功能块

西门子S7-1200PLC伺服电机运动控制FB功能块1.该FB块是我集成的一个功能块&#xff0c;可以实现脉冲方式控制伺服电机位置控制。 2.一个块就可以实现伺服的上电&#xff0c;使能&#xff0c;相对定位&#xff0c;绝对定位&#xff0c;JOG运行&#xff0c;回原控制&#xff08;包…

YOLOv10官方镜像实测:小目标检测提升显著

YOLOv10官方镜像实测&#xff1a;小目标检测提升显著 在工业质检、智能交通和无人机巡检等场景中&#xff0c;小目标检测长期面临“看得见却抓不准”的困境。传统YOLO系列虽具备实时性优势&#xff0c;但在密集小目标场景下常因特征表达能力不足导致漏检。近期发布的 YOLOv10 …

Qwen3-VL-2B与InternVL2对比:长上下文处理能力评测

Qwen3-VL-2B与InternVL2对比&#xff1a;长上下文处理能力评测 1. 引言 随着多模态大模型在图文理解、视频分析和跨模态推理等场景中的广泛应用&#xff0c;长上下文处理能力已成为衡量视觉语言模型&#xff08;VLM&#xff09;性能的关键指标之一。尤其在处理长文档解析、长…

4090D单卡部署PDF-Extract-Kit:高性能PDF处理实战教程

4090D单卡部署PDF-Extract-Kit&#xff1a;高性能PDF处理实战教程 1. 引言 1.1 业务场景描述 在现代文档自动化处理流程中&#xff0c;PDF作为最通用的文档格式之一&#xff0c;广泛应用于科研论文、财务报表、合同协议等高价值信息载体。然而&#xff0c;传统PDF解析工具&a…

MGeo一致性哈希:分布式环境下请求均匀分配策略

MGeo一致性哈希&#xff1a;分布式环境下请求均匀分配策略 1. 技术背景与问题提出 在大规模分布式系统中&#xff0c;如何高效、稳定地将请求分发到多个服务节点&#xff0c;是保障系统性能和可用性的关键。尤其在地址相似度匹配这类高并发、低延迟的场景下&#xff0c;如阿里…

YOLO26如何导出ONNX模型?推理格式转换详细步骤

YOLO26如何导出ONNX模型&#xff1f;推理格式转换详细步骤 在深度学习部署过程中&#xff0c;模型格式的兼容性至关重要。ONNX&#xff08;Open Neural Network Exchange&#xff09;作为一种开放的模型交换格式&#xff0c;能够实现跨框架、跨平台的模型部署&#xff0c;广泛…

OTA bootloader 嵌入式 上位机 升级解决方案, 安全加密,稳定升级 MIIOT

OTA bootloader 嵌入式 上位机 升级解决方案&#xff0c; 安全加密&#xff0c;稳定升级 MIIOT &#xff0c;米家OTA 经过可靠性测试搞过嵌入式的人都懂&#xff0c;OTA升级要是翻车&#xff0c;那真是半夜三点爬起来修设备的节奏。今天就聊聊怎么让设备在空中升级的时候既稳如…

STM32 IAP固件升级程序源代码。 STM32通过串口,接 收上位机、APP、或者服务器来...

STM32 IAP固件升级程序源代码。 STM32通过串口&#xff0c;接 收上位机、APP、或者服务器来的数据&#xff0c;更新设备的固件&#xff0c;也就是说上位机端&#xff08;需用户自己编写&#xff09;可以通过wifi转串口&#xff0c;网口转串口&#xff0c;GPRS转串口模块等&…

MGeo地址相似度识别性能报告:长尾地址匹配能力评估

MGeo地址相似度识别性能报告&#xff1a;长尾地址匹配能力评估 1. 技术背景与评估目标 在地理信息处理、位置服务和数据融合等应用场景中&#xff0c;地址相似度识别是实现实体对齐的核心技术之一。由于中文地址存在表述多样、结构不规范、别名广泛等特点&#xff0c;尤其是“…

麦橘超然开源协议分析:Apache 2.0意味着什么?

麦橘超然开源协议分析&#xff1a;Apache 2.0意味着什么&#xff1f; 1. 引言 1.1 技术背景与项目定位 随着生成式人工智能的快速发展&#xff0c;图像生成模型逐渐从研究实验室走向实际应用。在这一趋势下&#xff0c;麦橘超然&#xff08;MajicFLUX&#xff09; 作为基于 …

UNet人像卡通化可解释性研究:注意力机制可视化分析尝试

UNet人像卡通化可解释性研究&#xff1a;注意力机制可视化分析尝试 1. 研究背景与问题提出 近年来&#xff0c;基于深度学习的人像风格迁移技术取得了显著进展&#xff0c;其中UNet架构因其强大的编码-解码能力&#xff0c;在图像到图像转换任务中广泛应用。阿里达摩院ModelS…