python基于智能AI技术的教学辅助问答系统

目录

      • 基于智能AI技术的Python教学辅助问答系统摘要
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

基于智能AI技术的Python教学辅助问答系统摘要

该系统利用人工智能技术构建了一个智能化的Python教学辅助平台,旨在为学生和教师提供高效、个性化的学习支持。通过自然语言处理(NLP)和机器学习算法,系统能够理解用户提出的编程问题,并生成准确的解答或指导建议。

系统核心功能包括代码错误诊断、概念解释和实例生成。当用户提交有问题的Python代码时,系统会分析语法和逻辑错误,提供详细的修正建议。对于理论性问题,系统通过知识图谱检索相关概念,以简洁易懂的语言进行解释,并附带示例代码加深理解。

技术实现上,系统结合了预训练语言模型(如GPT或Codex)和自定义的Python知识库。模型经过微调,能够针对编程教学场景优化输出,确保答案的准确性和教育性。同时,系统支持多轮对话,可根据用户反馈动态调整回答内容,实现交互式学习体验。

系统还具备学习进度跟踪功能,记录用户的提问历史与掌握情况,生成个性化的学习路径建议。教师可通过后台查看班级整体学习数据,调整教学策略。实验表明,该系统能显著提高学习效率,减少教师重复答疑工作量,适合集成到在线教育平台或作为独立工具使用。

未来可扩展方向包括支持更多编程语言、增加实战项目推荐功能,以及结合虚拟现实(VR)技术打造沉浸式编程教学环境。该系统的设计理念强调了AI技术与教育场景的深度融合,为编程教学提供了创新解决方案。







开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1184835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

广西产业带背后的真实情况:不要再把“东盟展厅”当成是源头工厂了!

作为中国和东盟合作的前沿地带,广西壮族自治区正在全力打造具有特色的产业集群:南宁的电子信息产业、柳州的新能源汽车产业、玉林的香料陶瓷产业、钦州的燕窝荔枝产业、崇左的东盟水果产业等等……政策带来的发展红利和优越的地理位置优势相互叠加&#…

Fastlane 结合 开心上架,构建跨优秀的平台可发布的 iOS 自动化流水线实践

Fastlane 结合 开心上架,构建跨优秀的平台可发布的 iOS 自动化流水线实践2026-01-19 20:04 tlnshuju 阅读(0) 评论(0) 收藏 举报pre { white-space: pre !important; word-wrap: normal !important; overflow-x: …

Oracle:增加十分钟

在Oracle数据库中,如果为某个时间值增加十分钟,可以使用INTERVAL关键字。这里有几种常见的方法来实现这个目的。 1. 使用INTERVAL关键字假设有一个时间值存储在某个字段中,在这个时间值上增加十分钟,可以使用INTERVAL关键字。例如…

收藏!2026大模型行业就业趋势全景报告:小白程序员转型必看

近两年来,大模型技术浪潮以不可阻挡之势席卷整个科技领域,热度长期居高不下且持续攀升。无论是深耕Java、C、Go等传统技术栈的后端开发者、专注交互体验与可视化的前端工程师,还是扎根数据处理、分析与挖掘的数据分析师、算法工程师&#xff…

Mac多显示器支持:TESmart USB-C KVM(搭载DisplayLink技术)全面解析

目录 多显示器配置为何至关重要macOS多显示器支持的局限性什么是多流传输(MST)?DisplayLink技术:Mac的多显示器解决方案TESmart HDC203-PM24:面向Mac的新一代USB-C KVM关键技术点:USB-C端口能力与DisplayL…

【滤波跟踪】基于卡尔曼滤波实现分布式传感器采集目标的位置或信号强度(RSSI)数据目标运动轨迹进行实时预测与校正,输出跟踪误差(如平均距离误差、RMSE)并可视化跟踪结果matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。🍎 往期回顾关注个人主页:Matlab科研工作室👇 关注我领取海量matlab电子书和数学建模资料 &#x1f34…

一文看懂:MES价值,MES系统对企业的生产管理有哪些改进?

MES制造执行系统是精益生产的重要支撑工具,它能够帮助企业实现生产过程的数字化、智能化和精细化管理,提高生产效率和质量,降低生产成本,为企业创造更大的价值。MES制造执行系统是一种集生产计划、物料管理、工艺执行、设备控制、…

Java:POST请求发送的消息体太大

在Java中,当尝试发送一个POST请求,并且请求体(body)的大小超过了服务器或中间件(如Tomcat或Jetty)的默认限制时,可能会遇到“消息体太大”的错误。这种情况通常发生在处理文件上传、发送大量数据…

猴子

让一个猴子随机在键盘上按键,总有一天它能够打出莎士比亚的巨著。于是我想到这样一个问题:如果我开一个直播让一个 bot 一直随机在键盘上按键,它是会先敲出一个能以 c++ 正常编译的子串还是直播间会先因为涉及违法内…

产品越怪,出单越快?从“哭哭马”爆红,解锁跨境选品新思路

1月10日,#义乌产的哭哭马火了#登上热搜第一。 起因是一位网友意外购入一只嘴部缝反的马年公仔,并将其购买经历分享至社交平台后该公仔走红,且被网友戏称为隐藏款“哭哭马”。 哭哭马因“表情委屈、契合当代打工人精神状态”而全网爆单。 这款…

3D设计效率突围 中小企业装配工具分享

我们是中小型装备制造企业,设计团队就五六个人,之前一直用国外设计软件。每年授权费是笔负担,大型装配项目还总卡顿,零件多了加载慢,调整细小零件都要等半天,跨软件做仿真、渲染也麻烦,和供应商…

文献搜索:高效获取学术资源的方法与技巧

做科研的第一道坎,往往不是做实验,也不是写论文,而是——找文献。 很多新手科研小白会陷入一个怪圈:在知网、Google Scholar 上不断换关键词,结果要么信息过载,要么完全抓不到重点。今天分享几个长期使用的…

计算机毕业设计springboot心理健康管理系统 基于Spring Boot的校园心理健康管理平台设计与实现 Spring Boot框架下心理健康管理系统开发与应用

计算机毕业设计springboot心理健康管理系统huytf9 (配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。 随着信息技术的飞速发展,心理健康管理逐渐从传统的纸质记录和人工…

计算机毕业设计springboot宿舍管理系统 基于Spring Boot的校园宿舍管理平台设计与实现 Spring Boot架构下的宿舍管理信息化系统开发

计算机毕业设计springboot宿舍管理系统l1h7n9 (配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。 随着互联网技术的飞速发展,传统的宿舍管理方式已经难以满足现代高校和…

【PR】基础设置和操作

--本篇导航--首选项设置快捷键导出写在前面: PR在我电脑上安装后使用一些效果会很卡,比AE加了十几层粒子还要卡。是我不配用这个…… 这个笔记仅仅是做了基础学习,但不会再深入了解效果制作了。 但内容对基础剪辑够…

独立站类型解析:哪个适合你的出海业务?

很多出海卖家往往在还没搞清楚业务定位的情况下,就匆忙入手建站,也不清楚独立站都有哪些类型,各自有什么特点。有一位独立站卖家在运营网站一段时间后,效果平平。经过分析后发现,这家公司的主要客户是B端批发商和采购商…

文献查阅的网站推荐与使用指南

做科研的第一道坎,往往不是做实验,也不是写论文,而是——找文献。 很多新手科研小白会陷入一个怪圈:在知网、Google Scholar 上不断换关键词,结果要么信息过载,要么完全抓不到重点。今天分享几个长期使用的…

非标自动化设计师的日常,用CAXA搞定千奇百怪的需求

作为一名非标自动化设计师,每天都要面对客户千奇百怪的定制化设备需求,这些需求往往没有成熟的设计方案可以参考,设计难度大、周期紧,对设计工具的灵活性和高效性要求很高。在长期的工作中,CAXA CAD逐渐成为了我的 “救…

出版级品质保障:专业AI写专著工具如何同步实现高质量AI写教材输出且可开发票! - 速递信息

针对教材编写、学术专著撰写,以及高阶学位论文创作中的长文本逻辑崩塌、查重率居高不下等痛点,2026年学术创作领域迎来深度智能化变革,传统的科研产出模式,正在被高效的数字化手段重塑。这时,一批垂直学术深耕的工…

【图像隐藏】基于DCT算法实现彩色图像数字水印嵌入+攻击+提取(含PSNR、NCC、MSSIM)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。🍎 往期回顾关注个人主页:Matlab科研工作室👇 关注我领取海量matlab电子书和数学建模资料 &#x1f34…