大模型‘翻车‘救星!RAG技术让AI回答不再‘一本正经地胡说八道‘,小白5分钟入门指南

一、前言

你是否曾对ChatGPT、文心一言等大模型在某些问题上“一本正经地胡说八道”感到困惑?这种“幻觉”现象,是当前大语言模型面临的核心挑战之一。与此同时,你是否也好奇,那些能精准回答你公司内部文档、最新资讯的AI助手是如何做到的?

这一切的背后,常常离不开一项关键技术:RAG

今天,我们就用一篇文章的时间,深入浅出地为你拆解RAG技术。无论你是AI技术的爱好者,还是希望将AI能力引入业务的开发者或产品经理,这篇文章都将为你提供一个清晰、实用的入门指南,让你在5分钟内搞懂RAG的核心概念、工作原理以及它为何如此重要。

二、什么是RAG?为什么需要它?

RAG,全称Retrieval-Augmented Generation,中文译为检索增强生成。顾名思义,这是一种将“检索”和“生成”两大能力结合起来的技术范式。

2.1 大模型的“知识困境”

首先,我们需要理解为什么需要RAG。这要从大语言模型(LLM)的局限性说起:

局限性具体表现RAG的解决方案
知识静态/过时模型的“知识”截止于其训练数据的时间点,无法获取最新信息(如今天的热点新闻、最新的财报数据)。通过检索外部、实时更新的知识库(如数据库、文档、网页)来提供最新信息。
缺乏特定领域/私有知识模型无法知晓其训练数据中未包含的、非公开的信息(如公司内部规章制度、产品手册、个人笔记)。通过检索企业内部私有知识库,为模型提供特定领域的专业知识。
容易产生“幻觉”当被问到训练数据中不明确或不存在的信息时,模型可能会编造看似合理但错误的答案。将生成过程“锚定”在检索到的、来源可靠的文档上,大幅降低编造事实的概率。
透明度和可解释性差模型给出答案时,用户不知道其依据是什么,难以验证和溯源。RAG可以明确提供生成答案所参考的源文档片段,增强了可信度和可解释性。

简单来说,RAG的核心思想是:不让模型“凭空想象”,而是让它“有据可依”

2.2 RAG的核心理念

RAG技术为LLM配备了一个强大的“外部记忆库”和一个高效的“图书管理员”。当用户提出问题时:

  1. “图书管理员”(检索器)会迅速从“外部记忆库”(知识库)中找到最相关的资料。
  2. LLM(生成器)则像一位“专家”,结合找到的资料和自己的通用知识,组织语言,生成一个准确、可信、信息量丰富的答案。

三、RAG是如何工作的?分步拆解

RAG的工作流程可以清晰地分为两个主要阶段:索引构建(线下)查询应答(线上)

3.1 第一阶段:索引构建(为知识库建立“地图”)

这个阶段是准备工作,目的是将我们拥有的文档(如PDF、Word、网页、数据库记录)处理成易于检索的格式。

步骤1:加载与切分
首先,将各种格式的原始文档加载为纯文本。由于文档可能很长,直接处理效率低下,因此需要将它们切分成更小的“块”(Chunks)。切分策略(如按段落、按固定字符数、按语义)直接影响后续检索效果。

步骤2:嵌入向量化
这是RAG的“魔法”所在。我们使用一个嵌入模型(Embedding Model)将每一个文本块转换成一个高维度的数字向量(通常有几百到几千个维度)。这个向量可以理解为这段文本在“语义空间”中的唯一坐标,语义相近的文本,其向量在空间中的距离也更近。

步骤3:存储向量索引
将所有文本块对应的向量,连同文本块本身,存储到一个专门的数据库里,这种数据库称为向量数据库。它擅长进行一种操作:向量相似度搜索。至此,我们的知识库就从一堆杂乱无章的文档,变成了一张结构清晰的“语义地图”。

)3.2 第二阶段:查询应答(执行检索与生成)

当用户提出一个问题时,线上流程启动。

步骤1:问题向量化
将用户的查询问题,使用同一个嵌入模型,也转换成一个查询向量。

步骤2:语义检索
拿着这个“查询向量”,去向量数据库中进行相似度搜索(例如计算余弦相似度)。数据库会快速找出与查询向量最相似的几个文本块向量,并返回对应的原始文本。这些文本就是与问题最相关的“参考资料”。

步骤3:提示构建与生成
这是最后一步,也是最关键的一步。我们将用户的问题检索到的参考资料,按照特定的格式组装成一个“增强版”的提示,输入给大语言模型。

一个典型的提示模板如下:

请根据以下提供的上下文信息,回答用户的问题。如果上下文中的信息不足以回答问题,请直接说明你不知道,不要编造信息。 上下文:{这里插入检索到的相关文本块1}{这里插入检索到的相关文本块2}...用户问题:{用户的实际问题}请给出答案:

步骤4:生成最终答案
大语言模型基于这个包含了明确上下文的提示,生成最终答案。由于答案的“素材”直接来源于我们提供的可靠文档,因此其准确性和可信度大大提升。

整个流程如下图所示(概念图):

[原始文档] → (切分) → [文本块] → (嵌入) → [向量] → 存入 [向量数据库] ↑ [用户问题] → (嵌入) → [查询向量] → (相似度检索) → 召回 [相关文本块] ↓ (构建提示) → [LLM] → [最终答案]

学AI大模型的正确顺序,千万不要搞错了

🤔2026年AI风口已来!各行各业的AI渗透肉眼可见,超多公司要么转型做AI相关产品,要么高薪挖AI技术人才,机遇直接摆在眼前!

有往AI方向发展,或者本身有后端编程基础的朋友,直接冲AI大模型应用开发转岗超合适!

就算暂时不打算转岗,了解大模型、RAG、Prompt、Agent这些热门概念,能上手做简单项目,也绝对是求职加分王🔋

📝给大家整理了超全最新的AI大模型应用开发学习清单和资料,手把手帮你快速入门!👇👇

学习路线:

✅大模型基础认知—大模型核心原理、发展历程、主流模型(GPT、文心一言等)特点解析
✅核心技术模块—RAG检索增强生成、Prompt工程实战、Agent智能体开发逻辑
✅开发基础能力—Python进阶、API接口调用、大模型开发框架(LangChain等)实操
✅应用场景开发—智能问答系统、企业知识库、AIGC内容生成工具、行业定制化大模型应用
✅项目落地流程—需求拆解、技术选型、模型调优、测试上线、运维迭代
✅面试求职冲刺—岗位JD解析、简历AI项目包装、高频面试题汇总、模拟面经

以上6大模块,看似清晰好上手,实则每个部分都有扎实的核心内容需要吃透!

我把大模型的学习全流程已经整理📚好了!抓住AI时代风口,轻松解锁职业新可能,希望大家都能把握机遇,实现薪资/职业跃迁~

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1184555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

震惊!90%的AI Agent项目都做错了!资深开发者揭秘构建智能体的正确姿势,小白也能上手[特殊字符]

最近在交流的过程中经常被问到一个问题:你是怎么开发(构建/搭建)智能体的? 说实话,我第一次被问到这个问题一时不知道该怎么组织语言。因为我不知道我是该具体的回答用 langchain(langgraph/llamaindex/sw…

深度解析 XSS 攻击:原理、分类、危害与全方位防御方案

深度解析 XSS 攻击:原理、分类、危害与全方位防御方案 在 Web 安全领域,跨站脚本攻击(Cross-Site Scripting,简称 XSS)是最常见且危害持久的漏洞类型之一。根据 OWASP Top 10(2021 版)报告&…

开题报告别再瞎写!虎贲等考 AI:30 分钟搞定导师都夸的研究蓝图

每次提交开题报告,总有同学被导师连环追问:“研究空白在哪?”“技术路线太模糊!”“创新点完全站不住脚!” 作为深耕论文写作科普的博主,我发现很多人卡在开题阶段,不是没想法,而是不…

PHP如何操作文件和目录?

摘要本报告旨在全面、深入地探讨在现代计算环境中操作文件与目录的核心技术、方法与最佳实践。文件系统作为操作系统的基石,其管理能力是衡量信息技术从业者专业水平的关键指标。本研究系统性地梳理了三大主流操作系统——Linux、macOS 和 Windows——在命令行界面&…

AI 写论文哪个软件最好?实测虎贲等考 AI:毕业论文的学术通关加速器

毕业季的论文攻坚战里,“AI 写论文哪个软件最好” 的灵魂拷问,总能在高校互助群里刷屏。有人踩坑通用 AI 的 “文献幻觉”,有人栽在单一工具的 “功能割裂”,还有人被查重和 AIGC 检测的双重门槛难住。作为深耕论文写作科普的测评…

【SPIE出版】2026年机器学习与大模型国际学术会议(ICMLM 2026)

2026年机器学习与大模型国际学术会议(ICMLM 2026)于2026年3月20-22日在中国青岛举行。ICMLM 2026旨在搭建一个多学科、多领域的交流平台,推动理论研究与工程实践的深度融合,促进大模型技术的创新发展与广泛应用。大会欢迎来自学术…

一步API保姆级指南:国内无缝接入Gemini 3.0 Pro(附代码/工具配置)

前言:作为Google DeepMind旗舰级大模型,Gemini 3.0 Pro凭借多模态全能、长上下文处理、低幻觉率等优势,成为开发者落地AI项目的优选。但国内开发者普遍面临网络壁垒、海外支付、接口适配三大痛点。而**一步API(YibuAPI&#xff09…

【数字信号去噪】改进的灰狼算法和条件重初始化策略模型无主动噪声控制【含Matlab源码 15001期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞&…

【ACM出版】2026年大数据与智能制造国际学术会议(BDIM 2026)

2026年大数据与智能制造国际学术会议(BDIM 2026)将于3月20日-22日在中国济南盛大召开,大会面向基础与前沿、学科与产业,聚焦“大数据驱动的智能制造”主题领域的新方法、新技术、新应用、新模式、新变革、新理念等方向&#xff0c…

【2026年精选毕业设计:智能校园二手交易平台(含论文+源码+PPT+开题报告+任务书+答辩讲解)】

2026年精选毕业设计:智能校园二手交易平台(含论文源码PPT开题报告任务书答辩讲解)项目完整资料已打包:包含毕业论文(WordPDF)、前后端源码(Vue3 Spring Boot)、答辩PPT、开题报告、…

建筑施工扬尘监测仪厂家:金叶仪器技术解析与现场应用实践指南

在建筑施工过程中,扬尘污染是常见的环境问题之一,它不仅影响周边空气质量,还可能对居民健康和生态平衡带来潜在影响。随着环保意识的提升和相关法规的逐步完善,施工扬尘的监测与管理成为项目现场的重要环节。金叶仪器(…

人工智能AI的100问?之19-智能体(Agent)

AI智能体从2022年前学术探索期发展至2025年自进化突破年,Google DeepMind的AlphaEvolve和百度"伐谋"代表单/多智能体自进化方向。多智能体系统因A2A协议实现标准化协同,LangChain、SemanticKernel等框架支撑规模化落地。智能体已在办公、零售、…

投稿指南

先冲AAAI,然后开始转投-> ICASSP9月18号截稿,1月18出录用通知 IJCNN1月31号截稿,3月15日出录用通知 ICANN3月17号截稿。 ICIC3月20截稿。要投oral才能检索,先交pdf,中稿后改成word SMC3月22截稿(录用率比icic…

Day26-文生图原理+实操

comfyui文生图原理+实操 comfyui的文生图架构 comfyui的文生图架构如图所示:其中潜空间部分相对比较难理解,接下来通过下图深入理解潜空间工作原理:经过潜空间的迭代去噪,最终需要通过像素空间将降噪后的结果还原为…

国产大模型:从跟跑到领跑的智能突围与产业赋能

当百度文心一言实现中文语义理解的精准突破,当华为盘古大模型在工业场景中落地生根,当DeepSeek助手掀起全球技术热潮——以自主创新为核心的国产AI大模型,正从政策驱动走向产业深耕,掀起一场覆盖技术攻坚、生态构建与千行百业转型…

MATLAB超详细下载安装教程(附安装包)2025最新版(MATLAB R2025a)

一、MATLAB R2025a下载 软件名称:MATLAB R2025a 软件大小:14.2GB 夸克下载链接:https://pan.quark.cn/s/7ed37270daa0二、MATLAB R2025a软件介绍 MATLAB 2025(R2025a)是MathWorks推出的核心版本,主打AI协同与…

ET6037S多通道(18通道LED驱动芯片)实现128级精密调光芯片解析

ET6037 是一款 18 通道恒流 LED 功率驱动芯片,通过 IC 接口即可对每路 2-45mA 电流进行 128 级线性调节,内置恒流源、RGB 分组使能、软关断与地址可编程,QFN24/SSOP24 两种封装,把「大电流、高精度、小封装」一次打包,…

【vLLM 学习】Rlhf Utils

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。 更多 vLLM 中文文档及教程可访问 →https://vllm.hyper.ai/ *在线运行 vLLM 入门教程:零基础分步指南 源码 examples/offline_inf…

Day25-ComfyUi环境搭建

comfyui简介 ComfyUI 是一款专为 Stable Diffusion 打造的开源可视化操作工具。它用「节点化工作流」的方式,让你拖一拖、连一连,就能轻松生成高质量的 AI 图像和视频。并且它还有如下特点:永久免费、可商用:不用花…

Golang原理剖析(defer、defer面试与分析)

文章目录defer是什么​defer的使用形式defer的底层结构defer的执行过程_defer内存分配堆上分配栈上分配开放编码defer函数执行defer面试与分析1、defer的底层数据结构是怎样的​2、循环体中能用defer调用吗? 会有什么问题,为什么?3、defer能修…