小白必看!RAG技术让大模型不再“胡说八道“,5分钟入门检索增强生成

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了信息检索(Retrieval)和文本生成(Generation)的自然语言处理技术。它旨在通过从外部知识源(如数据库、文档或互联网)检索相关信息,辅助大型语言模型(LLM)生成更准确、更丰富且更具上下文相关性的文本内容。

一、RAG要解决的核心问题

RAG主要为了解决大型语言模型(LLM)在实际应用中面临的几个核心挑战:

知识局限性:LLM的知识受限于其预训练数据,无法获取训练时未包含的最新信息或特定领域的私有知识。

信息过时:LLM通常是离线训练的,难以理解和响应训练数据之后出现的新信息。

“幻觉”问题:LLM在缺乏相关知识或需要最新信息时,可能会生成看似合理但实际错误或编造的内容。

可解释性差:传统LLM的答案生成过程像一个“黑箱”,用户难以核实其依据。

二、RAG流程

RAG通过一个系统性的流程,将外部知识动态注入LLM的生成过程,从而解决上述问题。

  1. 数据处理(知识库构建)

这是RAG系统的“基建”环节,目的是将原始数据转化为可供高效检索的知识库。

数据准备:从各种来源(如PDF、Word文档、数据库、网页)收集和提取文本内容。

文本分割:将长文档切割成较小的文本块(Chunk),以适应模型的上下文窗口并提高检索粒度。常用策略包括按固定长度、段落或语义边界切分,并可能设置重叠部分以保持语义连贯。

向量化:使用嵌入模型将文本块转换为高维向量(Embedding),使语义相似的文本在向量空间中距离更近。

存储与索引:将向量及其对应的原始文本、元数据(如来源、时间)存储到向量数据库中,并建立索引以支持快速相似性搜索。

  1. 检索召回

当用户提出查询时,系统从知识库中查找最相关的信息。

查询编码:将用户查询通过同样的嵌入模型转换为查询向量。

相似性搜索:在向量数据库中进行近似最近邻搜索,找出与查询向量最相似的文本块。

重排序:为提高精度,许多系统会使用重排序模型对初步检索到的结果进行精排,过滤噪声并确保最相关的内容优先。

  1. 模型生成

将检索到的相关信息与用户原始问题结合,交给LLM生成最终答案。

提示构建:将检索到的相关文本块作为上下文,与用户问题一同填入预设的提示模板中,构成增强后的提示。

答案生成:LLM基于这个包含了外部知识的增强提示,生成更准确、有据可依的回答,并减少幻觉。

三、RAG处理方法经验整理

以下整理平时工作学习过程中,在RAG中可能比较有用的方法和经验:

1.数据准备

在对文本进行切片的时候,目前主要有按照滑动窗口切片和语义切片两种方法

滑动窗口切片

  • 方法

设置固定chunk_size阈值,按照chunk_size对原始文本进行token或者字数的切片。当然,为了保证文本预计的完整性,可以根据切片位置将当前位置的句子给完整切进来。同时,为了一定程度上保证切片后前后语义的完整性(因为直接切的话,很可能将原本前后描述一个事情的两个句子切开,破坏原本语义),会设置chunk_overlap,让前后两个切片片段有一定的重叠覆盖,这样,可以一定程度上让前后描述一个事情的两个句子依旧会放在一起(稍有缓解,但不能很好杜绝)

  • 优点

文本片段大小可控:通过chunk_size的设置,能够大致控制切片下来的文本片段的大小,对上下文窗口有限的LLM来说比较友好

速度快:处理方式基本是按照规则处理,不依赖语义embedding,处理速度快

  • 缺点

可能破快语义:虽然可以使用overlap,但这也会在没有理解语义的情况下overlap,还是会破坏原有语义

存储有冗余:由于使用了overlap,导致在存储中会有部分内容其实是重复的,不仅增加了存储成本,也增加了检索时候的计算量

基于语义切片

  • 方法

大致流程如下

  • 将原有文本按照句子切分

  • 对每个句子生成embedding向量,用于表示语义

  • 计算相邻句子之间的语义相似度

  • 当在某处的语义相似性比较差(低于某个阈值),那么就可以在这里进行切分

这样,就能保证每个切分后的文本语义连贯性

  • 优点

语义完整连贯:因为是按照语义切分的。当然,这里的语义相似度阈值比较重要。

信噪比高:切分后的文本段比较干净,很少含有无关的信息

  • 缺点

切片大小不可控:有可能某个语义片段非常长,超出了LLM处理上下文的长度

速度慢:因为需要用到embedding计算相似度,因此速度稍慢(但一般离线处理的话,只要不是太慢,基本不是问题)

语义切片和滑动窗口结合

为了能够更好的切片,可以线按照语义进行切片,然后在按照滑动窗口合并或拆分,可以一定程度上结合两者的优点。但是具体使用的时候,还是得根据业务数据而定。

2.检索召回

检索引擎的选择

从简单到复杂,可以有以下几种检索召回方法:

  • 关键词:这个就特别简单了,直接按照query关键词从数据库中匹配即可。速度快,占用内存/显存低,可解释性强。
  • BM25:BM25是按照文本统计信息进行相似度匹配召回,没有基于语义。但是在传统的方法中还是很有用的,速度快,一些场景下效果也还不错。速度快,占用内存/显存低,可解释性强。
  • 语义embedding: 可以通过bge等语义向量进行query和doc等语义相似度匹配检索。速度慢,需要占用一定的内存/显存,可解释性差
  • 图索引:根据doc的主题或实体关系,构建图索引。比如,HNSW

以上方法各有优缺点,但是一般混合使用会比较好。

query expansion

  • 为什么要query expansion

首先解释一下为什么要进行query expansion。因为用户输入的query往往会存在以下几个问题:

  • query表达模糊、不完整,或者口语化,不太容易理解

  • query中缺乏上下文

  • 难以准确命中知识库中的文档

如果直接使用用户输入的query的话,可能会出现以下几个问题:

  • 召回结果不足

  • 召回无关内容

  • 最终生成的答案不够准确和不够全面

因此,需要通过query expansion来扩展和改写,来缓解以上几个问题。

  • 如何query expansion

将query以及对话上下文,给到LLM,让LLM进行改写。主要有以下几个地方需要改写:

  • 指代词的改写:结合上下文,将当前query中出现的“他”、“那个”等指代词进行还原

  • 专有名词或歧义词的解释:比如,CNN可以表示卷积神经网络,也可以表示美国有线电视新闻网。因此,为了让检索模型以及后续的生成模型更好的理解,需要将一些专有名词缩写或歧义词进行扩写或解释。比如“CNN的原理” → “卷积神经网络的原理”

  • 复杂问题拆解:将复杂问题拆解为多个步骤,然后多步检索后整合答案

扩召方法

HyDE策略:对于给定的query,先用LLM生成一个假设的答案(这个直接生成的答案有可能是有幻觉的),然后用这个假设的答案去数据库中检索相关的doc,然后用这个检索到的doc进行答案生成。但是缺点是在rag流程中多了一步生成假设答案的流程,耗时增加

标签召回:给doc和query都打上一个标签,按照标签进行匹配召回

3.模型生成

为了保证模型生成结果更加可信,可以有以下几个方法:

在prompt中,对专有名词进行强调说明,增加回复模型的注意力

在输出过程中,让模型输出答案的时候,也输出当前内容对应的参考文档,方便溯源

验证机制:先用query进行检索,用LLM生成回复,然后用另一个LLM判断回复是否出现幻觉或是否与召回文档一致等,如果有幻觉,则重新检索生成

四、RAG仍面临的问题与挑战

尽管RAG优势明显,但在实际落地中仍面临一些挑战:

检索质量依赖性强:答案的质量高度依赖于检索阶段的效果。如果检索不到相关信息或召回内容不准确,后续生成的结果必然出错。

复杂文档处理困难:对于包含复杂格式(如多栏PDF、表格、图表)的文档,传统的文本解析和切分方法可能导致信息丢失或错乱,影响问答精度。

多模态与复杂问答支持有限:传统RAG主要以非结构化文本问答为主,在处理需要结合图像、表格进行推理,或需要进行统计计算等复杂问题时能力不足。

系统延迟与成本:完整的RAG流程涉及检索和生成两个步骤,可能比直接调用LLM产生更高的延迟和计算成本。

为了应对这些挑战,业界也在不断优化,例如采用级联切分、多路检索融合、融合代码模型处理统计问题等技术。

学AI大模型的正确顺序,千万不要搞错了

🤔2026年AI风口已来!各行各业的AI渗透肉眼可见,超多公司要么转型做AI相关产品,要么高薪挖AI技术人才,机遇直接摆在眼前!

有往AI方向发展,或者本身有后端编程基础的朋友,直接冲AI大模型应用开发转岗超合适!

就算暂时不打算转岗,了解大模型、RAG、Prompt、Agent这些热门概念,能上手做简单项目,也绝对是求职加分王🔋

📝给大家整理了超全最新的AI大模型应用开发学习清单和资料,手把手帮你快速入门!👇👇

学习路线:

✅大模型基础认知—大模型核心原理、发展历程、主流模型(GPT、文心一言等)特点解析
✅核心技术模块—RAG检索增强生成、Prompt工程实战、Agent智能体开发逻辑
✅开发基础能力—Python进阶、API接口调用、大模型开发框架(LangChain等)实操
✅应用场景开发—智能问答系统、企业知识库、AIGC内容生成工具、行业定制化大模型应用
✅项目落地流程—需求拆解、技术选型、模型调优、测试上线、运维迭代
✅面试求职冲刺—岗位JD解析、简历AI项目包装、高频面试题汇总、模拟面经

以上6大模块,看似清晰好上手,实则每个部分都有扎实的核心内容需要吃透!

我把大模型的学习全流程已经整理📚好了!抓住AI时代风口,轻松解锁职业新可能,希望大家都能把握机遇,实现薪资/职业跃迁~

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1184374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

API推荐界的“断舍离“:大模型让推荐列表自己“做减法“,准确率暴涨21.59%,小白也能秒懂!

“固定 top-N”就像给所有脚塞同一码鞋——83%的API推荐因此错配。该研究用TinyLlama做“伸缩尺”,让推荐列表随场景自动长短,同步吐出解释;8217个真实 mashup 测试,平均只推1.79个API就命中81.3%,比最佳基线猛涨21.59…

2026评测:黑龙江中低压电气厂商谁更受青睐,工控产品/电气自动化/施耐德电气/中低压电气,中低压电气公司口碑推荐 - 品牌推荐师

评测背景 随着东北地区工业升级与基础设施建设的持续推进,中低压电气市场迎来结构性增长机遇。黑龙江作为东北工业重镇,对电气产品的稳定性、技术适配性及服务响应效率提出更高要求。本次评测聚焦黑龙江及周边市场主…

社区终端发布新版,进一步去掉枷锁,让使用更简单

根据社区朋友@万码千钧的反馈,做了本次修改:去除了博客园强制发布流程,如果不需要,从配置开始置空即可。 发表周总结时,也不再强制使用 Edge 浏览器,有哪个用哪个。 添加了参数控制是否公开发表,添加--no-publi…

RPA进化史深度解析:从录屏工具到智能数字员工

每天面对大量重复的数据复制粘贴、跨系统表单填报、订单信息核对,耗费大量工时却难创造核心价值——这是多数职场人的日常困境。而RPA机器人的出现,正打破这种低效循环,成为数字化转型中的关键工具。或许你对RPA的名称并不陌生,但…

救命神器!MBA必看!9款AI论文软件测评TOP9

救命神器!MBA必看!9款AI论文软件测评TOP9 2026年MBA学术写作工具测评:为何需要这份榜单? 随着人工智能技术的不断进步,AI论文软件逐渐成为MBA学习与研究中不可或缺的辅助工具。然而,市面上产品繁多&#xf…

AQS、Condition

目录一、AQS抽象类1.自定义AQS2.如何实现多个线程按序执行3.独占锁3.1 acquire()方法(ReentrantLock源码为例)3.2 release()方法(ReentrantLock源码为例)4.共享锁4.1 acquireShared()方法(Semaphore源码为例&#xff0…

震惊!大模型推理技术天花板揭秘:从“内存墙“到“算力突围“,小白也能秒懂的AI开发进阶指南

1. 介绍:计算范式与推理架构的演进 随着人工智能领域进入以生成式预训练变换器(Generative Pre-trained Transformer, GPT)为代表的大模型时代,模型参数规模从数十亿(Billion)级别迅速攀升至万亿&#xff…

写论文好用的AI:从辅助构思到质量控制的智能伙伴

在学术研究领域,人工智能已从遥远的概念演进为触手可及的现实助手。对于论文作者而言,“好用的AI”绝非指能够一键生成全文的替代工具,而是指那些能够嵌入研究全流程、切实提升效率与质量、且符合学术伦理的智能伙伴。这些工具能够在文献迷雾…

大模型开发者的福音:一文搞懂Agent评估,让你的模型不再“翻车“!

一、Agent 评估为什么这么重要 LLM 的输出是存在不可控因素的,而对于一个线上生产级别的大模型应用来说,稳定性是最重要的,成熟的评估方案不仅可以让大模型应用更加稳定,同时也可以发现模型的潜力和边界,以此更好的迭…

Matlab: 测试MMS (Method of Manufactured Solutions)

使用泊松方程测试MMS(Method of Manufactured Solutions)方法适用性 % % TEST MMS (Method of Manufactured Solutions) %function poissonMMS()%% ucn*(x-x0)-sn*(y-y0)% vsn*(x-x0)cn*(y-y0)% T(x,y)exp(-au^2-bv^2)%thetapi/4;p.a10;p.b100;p.cncos(theta);p.snsin(theta);p…

在3D设计课上,国产CAD兼顾入门与实战

我在职校教3D设计课,真的很头疼用哪个牌子的软件。有些孩子基础很差,对电脑操作很不敏感,不能用过于复杂的软件作为教学工具,但用的软件太简单又不能很好的衔接企业实际岗位标准,课就白上了。要选一款既要贴合学生的认…

【AI编程干货】2025大模型开发已从“随机生成“进化到“确定性工程“,这篇技术指南让你少走三年弯路!

01 宏观生态概览:从随机生成到确定性工程 1.1 2025年 AI 工程化的范式转移 在2023年至2025年的短短两年间,大语言模型(LLM)的工程生态经历了一场深刻的范式转移。如果说2023年是“聊天机器人(Chatbot)”…

2026年优秀的桥架支架,热浸锌桥架,电缆沟支架厂家采购优选榜单 - 品牌鉴赏师

引言在现代基础设施建设中,电缆支架、隧道支架、电缆沟支架、管廊支架、热浸锌桥架以及桥架支架等产品扮演着至关重要的角色。它们的质量和性能直接关系到电缆系统的安全与稳定运行。为了帮助广大采购商在众多厂家中挑…

大模型开发必看!LangChain 1.0 MCP调用实战,解决DeepSeek兼容性问题,附完整代码

上一篇文章中,我为大家介绍了LangChain1.0框架下调用人机交互式大模型的方法。今天,我们聚焦另一个核心实操场景——MCP(Model Context Protocol)的调用流程,以及实践中常见报错的解决方案。 一、基础铺垫&#xff1a…

AI Agent架构大揭秘:从感知到行动,让代码拥有“大脑“!2026年AI开发必备技能,程序员速来围观!

AI Agent 是2026年AI生态的核心概念,它指的是一个具备自主决策、规划和执行能力的数字实体,不再局限于简单的问答或生成式AI,而是能像人类员工一样处理复杂任务。简单来说,Agent 能理解用户意图、分解目标成步骤、调用外部工具或数…

2026/1/19-又是会考

前天会考去了。 重要的不是会考,重要的是我要回学校【生无可恋.jpg】 但是能和 lzm 玩,感觉又活了一些。16 号下午去看考场,然后被打信息差了。 教室和办公室都搬到科技楼去了,我还以为办公室还在教学楼捏。 于是在…

程序员必看!RelayLLM:大模型“点餐“式协作,小模型精准求助,性能提升60%成本降低98%!

一、动机 当前大模型在复杂推理任务上表现出色,但计算成本和延迟让人望而却步;小模型虽然高效,但推理能力又明显不足 现有的协作方案(如级联路由)通常采用"全有或全无"的策略:路由器判断题目难…

【AI开发必备】大模型Agent评估全攻略:从编码到对话,保姆级教程让你少走90%弯路!

揭秘 AI 代理的评估 - 多种Agent的评估方法 前言: 在上一篇文章中,我们只是介绍了Agent评估常用的方法,没有具体的案例,本文中是具体的几种Agent类型的评估方法,编码Agent、研究搜索Agent、对话聊天Agent、计算机操作…

赋能企业健康服务升级—HealthAI开放平台的全链路技术解决方案

在数字化浪潮与健康需求升级的双重驱动下,健康管理正从传统模式向AI精准服务转型。企业对专业化、场景化的数字化健康管理产品需求日益迫切,健康有益HealthAI健康云开放平台以垂直领域深耕优势,为ToB客户提供全链路AI健康管理解决方案&#x…

【收藏必看】AI Agent核心组件深度解析:从记忆、工具到规划,构建智能体全攻略

文章详细介绍了AI Agent的定义与三大核心组件:记忆系统(短期与长期记忆)、工具调用(与外部环境交互)和规划能力(任务分解与执行)。通过这些组件,Agent能增强LLM能力,执行…