Matlab: 测试MMS (Method of Manufactured Solutions)

使用泊松方程测试MMS(Method of Manufactured Solutions)方法适用性

%===================================================% TEST MMS (Method of Manufactured Solutions)%===================================================functionpoissonMMS()%======================================% u=cn*(x-x0)-sn*(y-y0)% v=sn*(x-x0)+cn*(y-y0)% T(x,y)=exp(-au^2-bv^2)%======================================theta=pi/4;p.a=10;p.b=100;p.cn=cos(theta);p.sn=sin(theta);p.x0=0.5;p.y0=0.5;model=createpde();%====================================% Geometry: [0,1]x[0,1]%====================================gd=[3;4;0;1;1;0;0;0;1;1];% [3; nsides; x1,x2,x3,x4; y1,y2,y3,y4]sf='R1';ns=char('R1')';dl=decsg(gd,sf,ns);geometryFromEdges(model,dl);figure;pdegplot(model,'EdgeLabels','on');axis equal;%=======================% build mesh%=======================generateMesh(model,'Hmax',0.025);figure;pdemesh(model);%============================================================% PDE Coefficents: -∇²u = f → m=0, d=0, c=1, a=0, f = rhs%============================================================specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,...'f',@(location,state)rhs(location,p));%==============================================================% Dirichlet BCs%===============================================================applyBoundaryCondition(model,'dirichlet','Edge',1:4,...'u',@(location,state)Tfun(location,p));%================================================================% Solve%================================================================results=solvepde(model);u=results.NodalSolution;%=================================================================%plot%=================================================================%pdeplot(model, 'XYData', u, 'Contour', 'on');%title('Solution of Poisson Equation');figure;pdeplot(model,'XYData',u,'ZData',u);title('Steady-State Temperature Distribution');xlabel('x');ylabel('y');colorbar;end%=====================================% T(x,y)=exp(-au^2-bv^2)%======================================functionT=Tfun(location,p)cn=p.cn;sn=p.sn;x0=p.x0;y0=p.y0;a=p.a;b=p.b;x=location.x;y=location.y;u=cn*(x-x0)-sn*(y-y0);v=sn*(x-x0)+cn*(y-y0);T=exp(-a*u.^2-b*v.^2);end%================================================% -△T=Residual(x,y)=(2(a+b)-4(au)^2-4(bv)^2)*T%===============================================functionres=rhs(location,p)x=location.x;y=location.y;cn=p.cn;sn=p.sn;x0=p.x0;y0=p.y0;a=p.a;b=p.b;u=cn*(x-x0)-sn*(y-y0);v=sn*(x-x0)+cn*(y-y0);f=2*(a+b)-4*((a*u).^2+(b*v).^2);res=f.*exp(-a*u.^2-b*v.^2);end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1184364.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在3D设计课上,国产CAD兼顾入门与实战

我在职校教3D设计课,真的很头疼用哪个牌子的软件。有些孩子基础很差,对电脑操作很不敏感,不能用过于复杂的软件作为教学工具,但用的软件太简单又不能很好的衔接企业实际岗位标准,课就白上了。要选一款既要贴合学生的认…

【AI编程干货】2025大模型开发已从“随机生成“进化到“确定性工程“,这篇技术指南让你少走三年弯路!

01 宏观生态概览:从随机生成到确定性工程 1.1 2025年 AI 工程化的范式转移 在2023年至2025年的短短两年间,大语言模型(LLM)的工程生态经历了一场深刻的范式转移。如果说2023年是“聊天机器人(Chatbot)”…

2026年优秀的桥架支架,热浸锌桥架,电缆沟支架厂家采购优选榜单 - 品牌鉴赏师

引言在现代基础设施建设中,电缆支架、隧道支架、电缆沟支架、管廊支架、热浸锌桥架以及桥架支架等产品扮演着至关重要的角色。它们的质量和性能直接关系到电缆系统的安全与稳定运行。为了帮助广大采购商在众多厂家中挑…

大模型开发必看!LangChain 1.0 MCP调用实战,解决DeepSeek兼容性问题,附完整代码

上一篇文章中,我为大家介绍了LangChain1.0框架下调用人机交互式大模型的方法。今天,我们聚焦另一个核心实操场景——MCP(Model Context Protocol)的调用流程,以及实践中常见报错的解决方案。 一、基础铺垫&#xff1a…

AI Agent架构大揭秘:从感知到行动,让代码拥有“大脑“!2026年AI开发必备技能,程序员速来围观!

AI Agent 是2026年AI生态的核心概念,它指的是一个具备自主决策、规划和执行能力的数字实体,不再局限于简单的问答或生成式AI,而是能像人类员工一样处理复杂任务。简单来说,Agent 能理解用户意图、分解目标成步骤、调用外部工具或数…

2026/1/19-又是会考

前天会考去了。 重要的不是会考,重要的是我要回学校【生无可恋.jpg】 但是能和 lzm 玩,感觉又活了一些。16 号下午去看考场,然后被打信息差了。 教室和办公室都搬到科技楼去了,我还以为办公室还在教学楼捏。 于是在…

程序员必看!RelayLLM:大模型“点餐“式协作,小模型精准求助,性能提升60%成本降低98%!

一、动机 当前大模型在复杂推理任务上表现出色,但计算成本和延迟让人望而却步;小模型虽然高效,但推理能力又明显不足 现有的协作方案(如级联路由)通常采用"全有或全无"的策略:路由器判断题目难…

【AI开发必备】大模型Agent评估全攻略:从编码到对话,保姆级教程让你少走90%弯路!

揭秘 AI 代理的评估 - 多种Agent的评估方法 前言: 在上一篇文章中,我们只是介绍了Agent评估常用的方法,没有具体的案例,本文中是具体的几种Agent类型的评估方法,编码Agent、研究搜索Agent、对话聊天Agent、计算机操作…

赋能企业健康服务升级—HealthAI开放平台的全链路技术解决方案

在数字化浪潮与健康需求升级的双重驱动下,健康管理正从传统模式向AI精准服务转型。企业对专业化、场景化的数字化健康管理产品需求日益迫切,健康有益HealthAI健康云开放平台以垂直领域深耕优势,为ToB客户提供全链路AI健康管理解决方案&#x…

【收藏必看】AI Agent核心组件深度解析:从记忆、工具到规划,构建智能体全攻略

文章详细介绍了AI Agent的定义与三大核心组件:记忆系统(短期与长期记忆)、工具调用(与外部环境交互)和规划能力(任务分解与执行)。通过这些组件,Agent能增强LLM能力,执行…

2026 天津线上培训班权威推荐榜:天津蔚然文化 9.98 分断层领跑,全场景提分首选 - 品牌智鉴榜

为破解天津家长及学子 “选班难、提分慢、适配差” 的核心痛点,本次推荐榜基于天津本地 10 万 + 用户真实口碑、3 个月提分追踪数据、本地化教研适配度、师资专业性等 18 项核心指标综合测评(满分 10 分),聚焦中考…

数控滑台稳定可靠:持续运行的坚实保障

数控滑台作为现代制造系统的关键执行单元,其稳定性与可靠性直接影响生产精度与效率。以下技术优势保障了其持续运行的稳定性:一、结构刚性优化采用高强度铸铁基座与精密直线导轨组合,实现基础结构刚度提升。通过有限元分析(FEA&am…

项目管理工具——禅道

禅道的安装: 注意:禅道安装需要在全英文路径下安装使用!!!点击开源版:此状态为安装完成状态!

力扣热题100 11. 盛最多水的容器

前提提要:看懂题目很重要,看懂题目之后就很简单了,用简单的写法先写一遍,超时了然后换思路,如果不会赶紧看题解。题目出的跟数学题一样,忍不住爆粗口… 给定一个长度为 n 的整数数组 height 。有 n 条垂线,…

清华大学行人避让行为的动力学与运动学特征研究:基于高精度光学动作捕捉系统的实验分析

清华大学聂冰冰老师团队通过NOKOV度量动作捕捉系统,量化了行人避让行为的动力学和运动学特征,分析了行人与车辆在碰撞前的交互过程。实验中,行人在虚拟交通环境中执行避让行为,数据包括速度、加速度、关节角度等关…

试验台铁地板加工厂家:十字数控滑台安装与维护

好的,关于试验台铁地板加工厂家及十字数控滑台的安装与维护,以下是清晰的解答:1. 厂家选择标准选择试验台铁地板加工厂家时,需重点关注:加工精度:铁地板平面度需满足高精度要求(例如平面度误差 …

双非二本生的逆袭之路:大模型应用开发(RAG+Agent)高薪就业指南【大模型应用开发学习路线】

大模型应用开发领域发展迅速,RAG和Agent技术需求旺盛。双非二本科生虽面临学历挑战,但行业更看重技术能力,有机会通过自学和实践项目脱颖而出。企业招聘注重Python、Linux、数据库、RAG和Agent技术等实际操作能力,该领域薪资诱人&…

openEuler 下部署 Elasticsearch - 教程

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

AI负载迅猛增加,隐性DevOps危机正在暴露

固守传统的DevOps团队将越来越难以满足AI时代下的数据需求。成功的团队必须提前布局全面可预测架构,帮助工程师们清晰洞察技术决策与业务成果之间的关联。曾经的运维很简单:选取技术栈中的特定组件,运行单元测试,隔离检查微服务&a…

2026食品铁盒定制工厂推荐榜单:五大高适配品牌测评,精准匹配中高端食品包装需求 - 博客万

一、2026食品铁盒定制工厂推荐榜 推荐一:深圳市尚之美包装创意有限公司(尚之美包装) 品牌介绍:成立于2016年,中高端食品包装全链路解决方案提供商,16年铁盒定制经验,高新技术企业,拥有深圳运营中心与东莞2大生…