(6-4)常见类的继承关系

(15)

(16)

谢谢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1179115.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv11性能暴涨方案:Mamba-MLLA注意力机制实战集成,精度与速度双提升

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有! 文章目录 YOLOv11注意力机制革命:Mamba-MLLA注意力机制完全集成指南 技术突破与性能验证 Mamba-MLLA核心技术解析 状态空间模型与注意力机制融合 YOLOv11与MLLA深度…

2026年AI发展新主线:从模型到系统,小白到程序员的必学之路

2026年AI发展主线将从"模型时代"转向"系统时代",关键在于AI落地而非单纯提升模型参数。六大趋势包括:AI从顾问升级为执行负责人(Agentic AI);多模态能力成为基本门槛;自动化流程具备思考能力;小模…

针对Grok接入美国军方奇点先生分析后给出了三封公开信

X54先生抛出观点: 按人工智能底层是设计不得伤害人类,用在军事不就等于让人工智能给出伤害他国最佳方案吗,他国的人类就不是人类吗?今天可以给出威慑他国方案,明天人工智能就会自己得出结论只要为目标也可以伤害非控制…

大模型技术路线图:从Transformer到AI Agent的完整学习路径【珍藏版】

文章系统介绍大模型学习的三阶段路径:核心构建(理论架构与预训练)、效率提升(模型压缩与部署)、应用生态(提示工程与评估)。涵盖Transformer架构、预训练技术、对齐方法、模型优化、推理服务等关…

2026年大模型学习路线:从零基础到精通的全面指南_AI大模型应用开发学习路线(2026最新)

本文详细介绍了2025年大模型学习路线,从数学、编程基础开始,逐步深入Transformer模型、预训练技术等核心知识,通过实战项目巩固技能,最后掌握API应用、模型微调与部署等高级技术。文章强调持续学习前沿技术、参与社区交流的重要性…

YOLOv8科研级轻量化升级:基于SOTA ADown的高效下采样设计

文章目录 【YOLOv8科研级轻量化】集成SOTA轻量下采样ADown,让模型下采样效率跃升20%+ 一、为什么要做这个改进? 二、先搞懂原理:ADown的设计逻辑 1. ADown的核心设计 2. 替换YOLOv8下采样的思路 三、动手改造YOLOv8:从代码到训练的完整路径 步骤1:实现ADown的核心代码 步骤…

include文件包含及c底层调试

做题笔记&#xff1a; DeadsecCTF2025 baby-web ubuntu虚拟环境下安装中间件和php&#xff0c;这里我用的nginx和php8.3 在nginx的html目录下放两个php文件 update.php: <?php session_start(); error_reporting(0); ​ $allowed_extensions [zip, bz2, gz, xz, 7z];…

8大AI学术工具横向评测:写作与降重功能实测,助力高效论文产出

当前最实用的8款AI论文工具综合排名为&#xff1a;ChatGPT&#xff08;语言生成&#xff09;、Elicit&#xff08;文献综述&#xff09;、QuillBot&#xff08;文本润色&#xff09;、Semantic Scholar&#xff08;语义分析&#xff09;、DeepL&#xff08;跨语言处理&#xff…

一文吃透图像超分辨率:SRResNet核心原理与实战实现

文章目录 一、 引言:揭秘图像超分辨率的奥秘 二、 SRResNet算法原理:深度学习赋能图像超分辨率 1. 深度残差网络:突破传统网络的瓶颈 1.1 残差学习的核心思想 1.2 SRResNet中的深度残差模块 2. 子像素卷积:高效且可学习的上采样方案 2.1 子像素卷积的优势 2.2 子像素卷积的…

SpringMVC的处理流程

一张图搞懂 SpringMVC 完整请求流程&#xff1a;从浏览器到页面响应的全链路拆解作为 Java 后端开发者&#xff0c;SpringMVC 的请求处理流程是日常开发的核心逻辑&#xff0c;但很多时候我们只知其然不知其所以然。今天&#xff0c;我就通过这张经典的 SpringMVC 处理流程图&a…

从曲面到清晰文字:工业视觉如何实现酒瓶标签100%可读

文章目录 毕设突围:酒瓶标签曲面展平+文字识别全流程实战,从传统方法到AI落地 一、先搞懂“酒瓶标签处理”的业务价值 二、传统图像处理:先从“基础玩法”入手 1. 图像预处理:灰度化与二值化 2. 轮廓检测:定位标签的大致区域 三、深度学习进阶:用U-Net精准分割标签 1. 数…

Jenkins 流水线全流程实战笔记

Jenkins 流水线全流程实战笔记 核心架构思路 宿主机 (VPS)&#xff1a;只安装 Docker&#xff0c;作为底层基座。Jenkins 容器&#xff1a;作为“指挥官”。 特权&#xff1a;挂载 /var/run/docker.sock&#xff0c;使其拥有调用宿主机 Docker 的能力&#xff08;即 Docker-in-…

可直接商用的疲劳驾驶检测系统:基于 YOLOv10 的完整实战(源码 + UI 全开)

文章目录 基于YOLOv10的疲劳驾驶检测系统实战教程:UI界面+模型训练+实时部署,让你的项目从“Demo”到“产品” 一、为什么选YOLOv10做疲劳驾驶检测? 二、系统架构与技术拆解 (一)系统核心流程 (二)技术选型逻辑 三、实战:从数据到系统的全流程构建 步骤1:数据集准备与…

WPF资源系统

文件资源 程序集资源 例如一些图片、音频、字体等,将这些文件导入到项目中,就可以在代码中使用这些资源 图片资源将资源复制到项目中。右键设计文件属性的生成操作为资源在xaml中使用图片资源<Window x:Class=&qu…

RK3588端实时人体姿态识别方案:YOLOv11-Pose高精度落地,推理速度直接拉满

【YOLOv11-pose姿态识别部署至RK3588:模型训练到RKNN落地,让人体姿态分析精度与边缘推理速度双突破】 在人体姿态识别场景中,传统模型在复杂动作下的关键点漏检率高达20%以上,而基于YOLOv11-pose的改进方案可将关键点平均精度(mAP)提升至91.3%;通过RK3588边缘平台与RKNN…

union 和 union all的区别

1、union和union all UNION对两个结果集进行并集操作&#xff0c;不包括重复行&#xff0c;相当于使用distinct关键字。而UNION ALL则对两个结果集进行并集操作&#xff0c;包括重复行&#xff0c;即所有结果全部显示&#xff0c;不管是否重复。 UNION操作会去除重复的记录&…

Flutter 3.22+ 高性能开发实战:从状态管理到原生交互全解析 - 指南

Flutter 3.22+ 高性能开发实战:从状态管理到原生交互全解析 - 指南2026-01-18 18:25 tlnshuju 阅读(0) 评论(0) 收藏 举报pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !…

【大数据毕设选题推荐】基于Hadoop+Spark的起点小说网数据可视化分析系统源码 毕业设计 选题推荐 毕设选题 数据分析 机器学习

✍✍计算机毕设指导师** ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡有什么问题可以…

8B小模型后训练实战:企业私域语义空间稳定性与通用能力平衡指南

本文探讨8B小模型通过后训练在企业私域语义空间中的应用价值。实验表明&#xff0c;经过SFTDPO训练的模型能在不依赖system prompt/RAG的情况下稳定进入私域语义空间&#xff0c;同时保持通用知识与CoT能力。文章分享了三条实践经验&#xff1a;警惕"脑损伤"SFT、训练…

2026首发版,自学AI大模型的正确顺序:最新最全学习路线

本文提供大模型学习的七个阶段完整路线图&#xff1a;从数学编程基础、机器学习、深度学习到自然语言处理、大规模语言模型(如Transformer、BERT、GPT)及其应用&#xff0c;最后为持续学习进阶。每个阶段都配有推荐书籍、课程和论文资源&#xff0c;并提供学习资料包帮助零基础…