YOLOv13新思路:SFHF + 傅里叶频域特征融合,mAP提升7.66%的完整方案



绿色线条为添加SFHF模块后的效果,map提升7.66,准确率提升9.11
通过SFHF_FourierUnit对输入进行傅里叶变换,提取频域特征,再利用TokenMixer_For_Local和TokenMixer_For_Gloal分别处理局部和全局特征,进行特征融合。通过卷积操作与残差连接增强信息流。SFHF_Block包含标准化层、特征混合层和前馈网络,实现高效的特征表示学习。模型最终通过多个SFHF_Block进行堆叠,提升表示能力。

文章目录

  • 移植
    • 创建ultralytics\cfg\models\v13\yolov13-SFHF.yaml
    • 修改ultralytics\nn\tasks.py
    • 修改ultralytics/nn/modules/__init__.py
    • 修改ultralytics\nn\modules\block.py
  • 训练
  • 原理介绍
      • 1. 模块整体概述
      • 2. 频域特征提取(SFHF\_FourierUnit)
      • 3. 局部特征建模(TokenMixer\_For\_Local)
      • 4. 全局特征建模(TokenMixer\_For\_Gloal)
      • 5. 局部与全局融合(SFHF\_Mixer)
      • 6. 多尺度前馈网络(SFHF\_FFN)
      • 7. 基本构建单元(SFHF\_Block)

移植

创建ultralytics\cfg\models\v13\yolov13-SFHF.yaml

nc:80 # number of classesscales:# model compound scaling constants,i.e.'model=yolov13n.yaml'will call yolov13.yaml with scale'n'# [depth,width,max_channels]n:[0.50

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1179043.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLO26创新改进 | 全网独家,注意力创新改进篇 | AAAI 2025 | 引入DTAB和GCSA创新点,通过重新设计通道和空间自注意力机制,助力YOLO26有效涨点

一、本文介绍 本文给大家介绍使用DTAB和GCSA创新点改进YOLO26模型!TBSN通过重新设计通道自注意力(分组通道注意力 G-CSA)来防止多尺度架构中的盲点信息泄露,并利用带掩膜的窗口自注意力 (M-WSA) 模仿扩张卷积以保持盲点特性,助力YOLO26有效涨点。 🔥欢迎订阅我的专栏、…

YOLOv8精度不够?这一套IoU改进方案,让目标检测框直接“贴边”,毕设效果拉满

文章目录一、为什么IoU家族升级是毕设的“精度密钥”?二、IoU家族的“精度逻辑”:让检测框学会“精准对齐”1. WIoU:动态分配注意力2. SIoU:形状与位置双优化3. EIoU:拆分维度精准优化三、实战:IoU家族升级…

程序员必看:从零开始如何进入大模型产品岗(附真实案例与面试经验)

文章揭示大模型产品岗位高度内卷,对专业背景和真实AI项目经验要求极高,不同于传统PM。强调需从0到1设计产品、模型选型评估等实战经验,非简单API调用。提供四阶段成长路径及多专业背景成功案例,建议求职者明确定位,先上…

6个论文平台AI分析:智能改写提升学术专业性

开头总结工具对比(技能4) �� 为帮助学生们快速选出最适合的AI论文工具,我从处理速度、降重效果和核心优势三个维度,对比了6款热门网站,数据基于实际使用案例: 工具名称 处理速度 降…

浙大权威团队《大模型基础》教材,小白入门必看!

浙江大学DAILY实验室团队编写的《大模型基础》教材是大语言模型入门优质资源,涵盖从传统语言模型到大模型架构、提示工程等核心技术。特色是将技术内容融入动物背景,降低理解门槛。读者可通过扫码添加微信免费获取教材、600篇LLM论文及大模型系列课程。此…

YOLO26涨点改进 | 全网独家复现,注意力创新改进篇 | ICCV 2025 | 引入MSA多尺度注意力,多尺度特征有助于全局感知和增强局部细节、助力小目标检测、遥感小目标检测、图像分割有效涨点

一、本文介绍 本文给大家介绍Multi-Scale Attention(MSA)多尺度注意力模块改进YOLO26。MSA 模块为 YOLO26 提供了更强的多尺度建模能力和显著的判别特征增强,提升了目标检测与异常检测的鲁棒性和精度,同时保持高效、轻量、可即插即用。具体怎么使用请看全文! 🔥欢迎订…

AI论文助手功能对比:8款工具写作与降重测评,学术效率提升方案

基于核心功能、处理速度和适用性的综合评估,结合用户反馈和实际案例数据,以下8个AI论文工具在学术写作辅助领域表现突出: ChatGPT凭借强大的语言生成能力位居前列,紧随其后的是专注于文献综述的Elicit和高效润色工具QuillBot&…

YOLO26创新改进 | 全网独家,Neck特征融合改进篇 | TGRS 2025顶刊 | 引入DSAM双流注意力融合模块,适合提升小目标检测任务精度,含3种创新改进点

一、本文介绍 本文给大家介绍DSAM双流注意力融合模块优化YOLO26模型!DSAM双流注意力融合模块通过显式建模前景与背景注意力,引导特征融合过程,从而提升小目标在复杂背景中的辨识能力,助力YOLO26各种小目标检测任务有效涨点 。具体怎么使用请看全文! 🔥欢迎订阅我的专栏…

零基础入门到实战:AI大模型全栈课程,手把手教你掌握Prompt技巧与模型微调

这是一门面向零基础学员的AI大模型课程,包含八大主题、六大项目实战和四大行业应用。课程从神经网络底层逻辑到DeepSeek等前沿技术剖析,涵盖Prompt技巧、模型训练微调、专家系统打造等内容,结合复杂性科学理论解读AI爆发逻辑。主讲专家为国内…

大模型如何破解就业难题?从学生到企业的全场景应用指南

本文介绍大模型技术在就业服务领域的创新应用,通过"校园职航&AI艾就业"平台,将30年HR经验与大模型结合,打造AI就业智能体。该平台提供职业测评、简历优化、面试模拟等全流程服务,帮助学生精准匹配职业方向&#xff…

YOLO26涨点改进 | 全网独家创新首发、特征融合Neck改进篇 | SCI 一区 2025 | 通道拼接融合已过时!用 DPCF 给 YOLO26加了“放大镜”,助力小目标检测高效涨点!

一、本文介绍 🔥提升小目标检测精度?用 DPCF 重新定义 YOLO26 的 Neck! 本文介绍将 DPCF 模块用于 YOLO26 的 Neck特征融合改进,可以显著提升多尺度特征融合质量,尤其是在小目标、低对比度、红外等场景中,增强检测精度和鲁棒性,同时保持较低计算开销,是一种高效且实…

YOLO26创新改进 | 全网独家创新篇、小目标检测专属 | AAAI 2025 | 引入HS-FPN中的HFP和SDP创新点,从频域增强小目标特征,淘汰FPN进行升级,助力YOLO26有效涨点

一、本文介绍 🔥本文给大家介绍HFP和SDP创新点优化YOLO26模型!HS-FPN通过高频感知模块(HFP)从频域增强小目标特征,并利用空间依赖感知模块(SDP)捕获相邻像素间的空间依赖。实验表明,HS-FPN在AI-TOD和DOT Amini10等小目标检测数据集上,相较于FPN显著提升了检测性能,…

RAG做出来容易,做好难?一文教你优化表格数据检索,建议收藏学习

文章指出RAG技术实现简单但优化困难,特别是在处理文档表格数据时。针对表格数据,作者建议将其作为结构化数据处理:一方面可以将表格数据提取为markdown格式进行语义召回,另一方面可以保存到关系数据库中使用SQL查询。通过结合SQL查…

多智能体协作模式:让AI智能体“组队干活“,突破单一能力边界(附完整代码)

文章介绍了多智能体协作模式,通过多个专业智能体分工合作,突破单一智能体的能力边界,解决复杂任务。详细阐述了多智能体协作的定义、6种典型协作形式、6种通信结构、4个实现要点,并通过实际案例对比展示了多智能体协作在效率和效果…

一个期望小问题

求 \(n\) 阶排列的置换环数量和。 GF,Stirling 数可以算,但是可以用期望的眼光看待。 一个点 \(i\) 所在环长度是 \(k\) 的概率是 \(1/n\),其是环上最小值的概率是 \(1/k\),环的数量可以看成 \(\sum [i 为环上最小…

AI产品经理学习路线非常详细,想成为AI产品经理?面试20+人后,我建议你照着这份指南准备

文章从AI产品总监视角,解析AI产品经理的分类(模型层与应用型)及必备能力:AI原生思维(接受不确定性、提示即交互、数据飞轮)、技术边界理解、交互设计、数据评估闭环,以及场景解构能力。强调AI产…

智能体持久性记忆实战:从0到1构建双路记忆堆栈

本文介绍如何为智能体构建持久性记忆系统,通过双路记忆堆栈(情节记忆语义记忆)解决智能体健忘问题。情节记忆使用向量数据库存储对话历史,语义记忆使用图数据库存储结构化事实。文章详细展示了实现方法、代码构建及实际应用&#…

一个很恶心但是能让你六周吃透大模型的方法_大模型学习路线(2025最新)从零基础入门到精通

本文提供了2025年大模型(LLM)的系统学习路线,分为五个阶段:基础准备(数学、编程、深度学习)、核心技术(Transformer、预训练、NLP)、实战项目(基础和领域特定)、高级技能(API应用、架构实践、微调部署)以及持续学习(前沿跟踪、社区交流、实践创新)。配套…

大厂AI产品经理全岗位解析:大模型、AI+、产品AI+三大方向技能要求与职业路径

文章解析了大厂三类AI产品经理岗位:1)大模型产品经理,负责数据提供、模型测评和策略制定;2)AI产品经理,挖掘LLM在各行业应用,需掌握大模型原理;3)产品AI功能经理,专注AI功能交互设计&#xff0c…

将魔法指令中的打印显示出来

将魔法指令中的打印显示出来 from xbot import print xbot.app.logging.trace print