从模型训练到RKNN部署:YOLOv8姿态识别在RK3588上的高精度实时落地方案

文章目录

  • 【YOLOv8-pose姿态识别部署至RK3588:模型训练到RKNN落地,让人体姿态分析精度与边缘推理速度双突破】
    • 一、项目背景与技术选型:为何选择YOLOv8-pose+RK3588?
    • 二、环境搭建:从代码仓库到硬件适配
      • 1. 源码获取与工程结构
      • 2. 依赖安装与硬件配置
    • 三、YOLOv8-pose模型训练:姿态识别的精度攻坚
      • 1. 数据集构建与预处理
      • 2. 模型训练与性能调优
    • 四、模型转换:从PyTorch到RKNN的量化之路
      • 1. 模型导出与ONNX优化
      • 2. RKNN量化与部署优化
    • 五、RK3588端侧部署:边缘场景的实时姿态分析
      • 1. 硬件部署与推理代码
      • 2. 性能测试与场景化优化
    • 六、常见问题与解决方案
      • 1. 训练时关键点损失不收敛
      • 2. RKNN转换时出现算子不支持
      • 3. 端侧推理关键点位置偏移
    • 七、总结:从实验室原型到边缘场景的技术闭环
    • 代码链接与详细流程

【YOLOv8-pose姿态识别部署至RK3588:模型训练到RKNN落地,让人体姿态分析精度与边缘推理速度双突破】

在人体姿态识别场景中,传统模型在复杂动作下的关键点漏检率高达20%以上,而基于YOLOv8-pose的改进方案可将关键点平均精度(mAP)提升至91.3%;通过RK3588边缘平台与RKNN量化部署,端侧推理速度可达30FPS,相比GPU推理成本降低60%。这意味着你将掌握一套从高精度姿态模型开发到低成本边缘部署的完整技术链路,让你的人体姿态分析项目在精度、速度、场景适配性上实现三重突破。

一、项目背景与技术选型:为何选择YOLOv8-pose+RK3588?

人体姿态识别(如运动分析、行为检测)对实时性与关键点精度要求苛刻。YOLOv8-pose作为新一代姿态估计算法,在COCO Keypoints数据集上mAP@0.5:0.95达70.4%,相比YOLOv7-pose推理速度提升25%;RK3588则是专为边缘AI设计的高性能芯片,搭载RKNPU 2.0,可实现INT8量化模型的毫秒级推理,功耗仅10W,完美适配智能监控、运动分析等边缘场景的部署需求。

健身动作姿态分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1178971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.9 Elasticsearch-单元测试:ESSingleNodeTestCase ESIntegTestCase

6.9 Elasticsearch-单元测试:ESSingleNodeTestCase & ESIntegTestCase 6.9.1 为什么需要两类测试基类 Elasticsearch 的源码里,90 % 的“单元测试”其实都在和磁盘、网络、集群状态打交道。 如果你只想验证一个分词器、一个聚合器或者一个查询解析…

YOLOv13高性价比改进模块:轻量化设计下mAP提升6.556个百分点

绿色线条为优化后的模型,map50提升2.31个点!map50 文章目录 移植 创建ultralytics\cfg\models\v13\yolov13-GSConv.yaml 修改ultralytics\nn\tasks.py 修改ultralytics/nn/modules/__init__.py 修改ultralytics\nn\modules\block.py GSConv卷积架构深度原理解析 引言 设计背景…

YOLOv13实战进阶:手把手教你添加注意力机制,检测精度显著提升

文章目录 @[toc] 深度解析与实践:在YOLOv13中集成注意力机制 引言:YOLOv13与深度学习的焦点 第一章:理解注意力机制——为什么以及是什么? 1.1 为什么目标检测需要注意力机制? 1.2 注意力机制的分类与基本原理 第二章:精选注意力模块的原理与实现 2.1 模块一:Squeeze-an…

YOLOv8性能突破秘籍:融合HAttention,让目标检测精度飙升

文章目录 《YOLOv8融合HAttention:激活更多像素的注意力机制科研实践指南》 一、为什么HAttention是像素激活的“密钥”? 二、HAttention的原理深度解析 1. 核心设计:层级化像素激活与融合 2. 与传统注意力机制的对比 三、HAttention的代码实现与YOLOv8集成 1. HAttention核…

6.10 Elasticsearch-提 PR 规范:CLA 签署、issue 关联、Backport 流程、release note

6.10 Elasticsearch-提 PR 规范:CLA 签署、issue 关联、Backport 流程、release note 向 Elasticsearch 官方仓库提 PR 时,代码质量只是“入场券”,真正决定合并速度的是你对社区流程的熟悉度。本节把四个最容易被 maintainers 打回票的环节…

跨端Flutter × OpenHarmony调色板应用首页设计与实现—基于颜色分类枚举与数据模型的工程化实践

文章目录跨端Flutter OpenHarmony调色板应用首页设计与实现—基于颜色分类枚举与数据模型的工程化实践前言背景Flutter HarmonyOS 6.0 跨端开发介绍开发核心代码与解析一、首页入口组件:IntroPage设计说明二、颜色分类枚举(ColorCategory)为…

AI技术支持的论文平台测评与专业润色方案

AI论文工具对比分析 工具名称 处理速度 降重幅度 独特优势 aicheck 极快 高(40%→7%) 精准保留专业术语 askpaper 快 中高(45%→8%) 上下文逻辑完整 秒篇 较快 高(38%→6%) 简化操作界面 a…

智能学术写作:AI平台评测与文本润色服务优化

AI论文工具对比分析 工具名称 处理速度 降重幅度 独特优势 aicheck 极快 高(40%→7%) 精准保留专业术语 askpaper 快 中高(45%→8%) 上下文逻辑完整 秒篇 较快 高(38%→6%) 简化操作界面 a…

AI优化论文写作:7大专业平台支持格式规范与LaTeX适配

工具快速对比排名(前7推荐) 工具名称 核心功能亮点 处理时间 适配平台 aibiye 学生/编辑双模式降AIGC 1分钟 知网、万方等 aicheck AI痕迹精准弱化查重一体 ~20分钟 知网、格子达、维普 askpaper AIGC率个位数优化 ~20分钟 高校检测规则通…

【SpringBoot】SpringMVC 请求注解详解 响应注解详解 Lombok - 指南

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

智能学术助手:7个平台提供格式规范与LaTeX支持

工具快速对比排名(前7推荐) 工具名称 核心功能亮点 处理时间 适配平台 aibiye 学生/编辑双模式降AIGC 1分钟 知网、万方等 aicheck AI痕迹精准弱化查重一体 ~20分钟 知网、格子达、维普 askpaper AIGC率个位数优化 ~20分钟 高校检测规则通…

智慧农业树上猕猴桃检测数据集VOC+YOLO格式2810张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2810标注数量(xml文件个数):2810标注数量(txt文件个数):2810标注类别…

用户 Token 到底该存哪?

🧑‍💻 写在开头 点赞 + 收藏 === 学会🤣🤣🤣面试官问:"用户 token 应该存在哪?" 很多人脱口而出:localStorage。 这个回答不能说错,但远称不上好答案。 一个好答案,至少要说清三件事:有哪些…

AI工具助力论文撰写:高效生成与降重,初稿轻松搞定

AI工具性能速览表 工具名称 核心功能 处理时间 AI生成率控制 适配检测平台 askpaper 降AIGC率降重同步 20分钟 个位数 知网/格子达/维普 秒篇 AI痕迹深度弱化 20分钟 个位数 知网/格子达/维普 aicheck 全学科初稿生成 20-30分钟 低水平 - aibiye 文献智能…

从原理到落地:Mamba-YOLOv8 全面实战指南(源码 + 训练 + 部署一次学会)

文章目录前言一、技术背景与动机1.1 传统架构的局限性1.2 Mamba的创新优势二、Mamba-YOLOv8架构详解2.1 整体架构设计2.2 核心模块:VSSblock2.3 SS2D模块工作原理三、完整实现流程3.1 环境配置3.2 代码集成步骤3.3 训练与微调四、性能分析与优化4.1 精度提升策略4.2…

vue3+python气象数据共享平台 天气预报数据共享系统

目录气象数据共享平台摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!气象数据共享平台摘要 该系统基于Vue3前端框架与Python后端技术构建,旨在实现高效、安全的气象数据共享…

为什么YOLOv13要用SKAttention?一文搞懂选择性核注意力的原理与实战效果

文章目录 SKAttention模块深度解析:选择性核注意力机制的理论与实践 1. 引言与背景 2. 理论基础与设计思想 2.1 传统多尺度方法的局限性 2.2 选择性核机制的生物学启发 2.3 注意力机制的演进 3. 模块架构详细分析 3.1 整体架构设计 3.2 构造函数详解 3.3 Split阶段:多核特征提…

AI培训:这不是又一个“割韭菜”风口,而是一个时代的基建革命

最近很多人问我怎么看现在满天飞的AI课,是不是割韭菜的又来了。我说,有些确实是,但更大的真相是:现在很多讲AI的人,根本不知道真正的复杂组织是怎么运作的。他们没做过实体项目,不懂生产线上的瓶颈在哪&…

vue3+python的多媒体素材管理系统

目录多媒体素材管理系统摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!多媒体素材管理系统摘要 该系统基于Vue3前端框架与Python后端技术构建,旨在实现高效、可扩展的多媒体…

从0到上线:用 Docker + TensorRT 将 YOLO 人体检测推理速度提升数倍(上篇)

往期文章 RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049 RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753 RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404 以及深度学习部署工…