vue3+python气象数据共享平台 天气预报数据共享系统

目录

      • 气象数据共享平台摘要
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

气象数据共享平台摘要

该系统基于Vue3前端框架与Python后端技术构建,旨在实现高效、安全的气象数据共享与可视化。平台整合多源气象数据(如温度、湿度、风速、降水等),通过标准化接口提供实时和历史数据查询,支持跨部门、跨机构的数据协作,满足科研、农业、交通等行业需求。

前端采用Vue3+TypeScript开发,结合Element Plus或Ant Design Vue组件库实现响应式界面,确保多端适配。通过ECharts或D3.js实现数据动态可视化,如折线图、热力图、风场图等,支持用户自定义分析维度。路由权限与状态管理(Pinia/Vuex)保障不同角色(管理员、普通用户、游客)的差异化访问。

后端使用Python(Flask/Django/FastAPI)构建RESTful API,处理数据请求与业务逻辑。通过JWT或OAuth2.0实现用户认证,结合Redis缓存高频查询数据以提升响应速度。气象数据存储选用PostgreSQL或MongoDB,支持时空索引优化查询效率。利用Celery异步任务处理大数据导出或复杂计算需求。

系统特色包括:

  • 多源数据融合:支持接入卫星、雷达、地面观测站等异构数据,通过ETL流程清洗入库。
  • 智能预警:基于阈值或机器学习模型触发极端天气告警,推送至用户端或第三方系统。
  • 开放接口:提供标准化API文档,便于第三方开发者集成气象数据至其他应用。
  • 安全审计:记录数据访问日志,结合RBAC模型控制敏感数据权限,符合GDPR等法规要求。

该平台可部署于云服务器(如AWS/Aliyun),利用Docker+Kubernetes实现高可用扩展,为气象数据共享生态提供轻量级、高性能的解决方案。






开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1178955.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为什么YOLOv13要用SKAttention?一文搞懂选择性核注意力的原理与实战效果

文章目录 SKAttention模块深度解析:选择性核注意力机制的理论与实践 1. 引言与背景 2. 理论基础与设计思想 2.1 传统多尺度方法的局限性 2.2 选择性核机制的生物学启发 2.3 注意力机制的演进 3. 模块架构详细分析 3.1 整体架构设计 3.2 构造函数详解 3.3 Split阶段:多核特征提…

AI培训:这不是又一个“割韭菜”风口,而是一个时代的基建革命

最近很多人问我怎么看现在满天飞的AI课,是不是割韭菜的又来了。我说,有些确实是,但更大的真相是:现在很多讲AI的人,根本不知道真正的复杂组织是怎么运作的。他们没做过实体项目,不懂生产线上的瓶颈在哪&…

vue3+python的多媒体素材管理系统

目录多媒体素材管理系统摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!多媒体素材管理系统摘要 该系统基于Vue3前端框架与Python后端技术构建,旨在实现高效、可扩展的多媒体…

从0到上线:用 Docker + TensorRT 将 YOLO 人体检测推理速度提升数倍(上篇)

往期文章 RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049 RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753 RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404 以及深度学习部署工…

AI赋能论文撰写:7个LaTeX兼容网站推荐

工具快速对比排名(前7推荐) 工具名称 核心功能亮点 处理时间 适配平台 aibiye 学生/编辑双模式降AIGC 1分钟 知网、万方等 aicheck AI痕迹精准弱化查重一体 ~20分钟 知网、格子达、维普 askpaper AIGC率个位数优化 ~20分钟 高校检测规则通…

NuImages 数据集转 YOLO 格式全攻略|踩过的坑和完整解决方案汇总

文章目录 前言 一、YOLO格式是什么? 二、Nuimages数据集简介 2.1 Nuscenes与Nuimages概述 2.2 Nuimages数据集的标注结构 2.3 转换Nuimages数据为YOLO格式 三、YOLO格式转换步骤详解 3.1 获取并处理数据 3.2 转换YOLO格式 3.3 保存YOLO格式数据 3.4 完整的转换代码 四、总结与…

还在嫌 YOLOv8 太慢?L1 剪枝实测:精度仅降 0.8%,速度大幅提升

剪枝后对比图: 文章目录 代码 原理介绍 核心做法概述 移植代码 下载yolov8代码 在工作根目录创建compress.py 创建ultralytics\models\yolo\detect\compress.py ultralytics\models\yolo\detect\compress.py 移植ultralytics\nn\extra_modules 移植ultralytics\cfg\hyp.scra…

vue3+python的粮油商品交易平台设计与实现

目录粮油商品交易平台设计与实现摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!粮油商品交易平台设计与实现摘要 基于Vue3和Python的粮油商品交易平台旨在构建一个高效、安全、用户友好…

YOLOv5在RK3588上性能翻倍:INT8量化与轻量化部署全实战

往期文章 RK3588测试NPU和RKNN函数包装:https://blog.csdn.net/FJN110/article/details/149669753 RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404 以及深度学习部署工程师1~31主要学习tensorRT、cmake、docker、C++基础、语义分割、目标检测、关键点识…

基于深度学习的数字识别检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍 项目背景: 数字识别是计算机视觉领域的一个重要任务,广泛应用于车牌识别、手写数字识别、工业自动化、文档处理等场景。传统的数字识别方法依赖于特征工程和模板匹配,难以应对复杂场景下的识别需求。基于深度学习的目标检测技术能够自动学…

vue3+python的运动减肥计划系统的设计与实现

目录运动减肥计划系统的设计与实现摘要开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!运动减肥计划系统的设计与实现摘要 该系统基于Vue3前端框架与Python后端技术,结合现代化W…

YOLOv8-Pose人体姿态识别在RK3588上的工程化部署方案(训练 / 转换 / 加速全覆盖)

文章目录 【YOLOv8-pose姿态识别部署至RK3588:模型训练到RKNN落地,让人体姿态分析精度与边缘推理速度双突破】 一、项目背景与技术选型:为何选择YOLOv8-pose+RK3588? 二、环境搭建:从代码仓库到硬件适配 1. 源码获取与工程结构 2. 依赖安装与硬件配置 三、YOLOv8-pose模型…

RK3588实战秘籍:YOLOv5s多线程部署,FPS从16飙升到120,轻量化+性能加速全流程教学

往期文章 RK3588RGA加速:https://blog.csdn.net/FJN110/article/details/149697775?spm=1001.2014.3001.5501 RK3588int8量化:https://blog.csdn.net/FJN110/article/details/149689460?spm=1001.2014.3001.5501 RK3588测试NPU和RKNN函数包装:https://blog.csdn.net/FJN110…

2025年成都火锅指南:聚焦春熙路口碑店铺,火锅店/美食/火锅/特色美食/老火锅/重庆火锅/川渝火锅,成都火锅品牌排行 - 品牌推荐师

行业洞察:春熙路火锅市场的竞争与机遇 成都火锅市场近年来呈现“本地化深耕”与“全国化扩张”并行的趋势。春熙路作为成都核心商圈,日均客流量超50万人次,火锅门店密度达每百米1.2家,竞争激烈程度居全国前列。据第…

RK3588 上手 YOLOv11:一步步教你完成高性能目标检测部署

文章目录 数据集根目录(根据实际情况修改) 划分比例 创建目标文件夹 获取所有图像文件 计算各数据集的文件数量 复制文件到对应文件夹 训练集、验证集、测试集路径 类别数量 类别名称 若使用自定义数据集,需修改 “train”“val”“test” 的路径为你划分后的数据集路径,“…

stm32智能手表 - 实践

stm32智能手表 - 实践2026-01-18 17:36 tlnshuju 阅读(0) 评论(0) 收藏 举报pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-…

YOLOv8模型瘦身到极致:LAMP剪枝实战,部署速度翻倍

YOLOv8模型瘦身术:深度解析与实战LAMP剪枝 (2021) 文章目录 YOLOv8模型瘦身术:深度解析与实战LAMP剪枝 (2021) 引言:为何模型剪枝至关重要? 1. 理论深潜:LAMP剪枝的核心思想与创新 1.1 幅度剪枝 (MP) 的“简单与粗暴” 1.2 LAMP 的核心创新点:最小化L2失真 1.3 巧妙化简:…

2025年行业内比较好的花灯销售厂家排行榜单,机械花灯/宫灯/景区灯会/传统花灯/大型花灯,花灯供应厂家如何选 - 品牌推荐师

近年来,随着文旅夜游经济的蓬勃发展,花灯作为传统节庆与现代文旅融合的核心载体,其市场需求持续攀升。从景区夜游项目到城市文化IP打造,花灯行业正经历从“单一装饰”向“智能互动”“文化赋能”的转型。然而,行业…

YOLOv13结构优化新方案:替换GSConv,轻量化同时mAP狂涨6.56%!

绿色线条为优化后的模型,map50提升2.31个点!map50 文章目录 移植 创建ultralytics\cfg\models\v13\yolov13-GSConv.yaml 修改ultralytics\nn\tasks.py 修改ultralytics/nn/modules/__init__.py 修改ultralytics\nn\modules\block.py GSConv卷积架构深度原理解析 引言 设计背景…

【WMS】把 WMS 系统彻底讲清楚:从底层逻辑到落地细节,一篇说透

把 WMS 系统彻底讲清楚:从底层逻辑到落地细节,一篇说透一、先纠正一个根本误区:WMS ≠ 仓库自动化二、WMS 的底层逻辑,其实就三件事三、WMS 覆盖的不是“流程”,而是“决策点”四、为什么 WMS 上线后,现场反…