YOLOv8模型瘦身到极致:LAMP剪枝实战,部署速度翻倍

YOLOv8模型瘦身术:深度解析与实战LAMP剪枝 (2021)

文章目录

    • YOLOv8模型瘦身术:深度解析与实战LAMP剪枝 (2021)
      • 引言:为何模型剪枝至关重要?
      • 1. 理论深潜:LAMP剪枝的核心思想与创新
        • 1.1 幅度剪枝 (MP) 的“简单与粗暴”
        • 1.2 LAMP 的核心创新点:最小化L2失真
        • 1.3 巧妙化简:从复杂优化到简单排序
        • 1.4 LAMP 分数:层自适应稀疏度的秘诀
      • 2. 实战演练:将LAMP剪枝移植到YOLOv8
        • 2.1 准备工作
        • 2.2 代码移植步骤详解
          • **步骤 1:创建主运行脚本 `compress.py`**
          • **步骤 2:创建核心剪枝逻辑 `compress.py` (在 `ultralytics/models/yolo/detect/` 目录下)**
          • **步骤 3:处理 `C2f` 模块的兼容性问题**
          • **步骤 4:配置文件的移植与修改**
      • 3. 运行实验与结果分析
        • 3.1 执行剪枝
        • 3.2 实验结果分析与讨论
      • 4. 结论与展望
      • 附录:完整代码文件列表
  • 移植代码
    • 下载yolov8代码
    • 在工作目录创建compress.py
    • 创建ultralytics\models\yolo\detect\compress.py
    • ultralytics\models\yolo\detect\compress.py
    • 移植ultralytics\nn\extra_modules
    • 移植ultralytics\cfg\hyp.scratch.sl.yaml
    • 修改ultralytics\cfg\default.yaml
    • YOLOv8剪枝代码解读
  • 实验

引言:为何模型剪枝至关重要?

在深度学习的黄金时代,我们见证了以YOLOv8为代表的目标检测模型在精度和性能上取得了飞速的进步。然而,这些卓越性能的背后,往往是模型规模和计算复杂度的不断攀升。一个庞大的模型虽然强大,但在实际部署,尤其是资源受限的边缘设备(如无人机、移动电话、嵌入式系统)上,却面临着严峻的挑战:高昂的内存占用、巨大的计算量以及随之而来的高延迟和高能耗。

模型剪枝(Model Pruning),作为模型压缩领域最核心、最有效的技术之一,应运而生。它如同为臃肿的模型进行一次精准的“瘦身手术”,通过移除网络中冗余或不重要的权重、神经元甚至整个结构,来显著降低模型的参数量和计算量(FLOPs),从而实现推理加速和资源节约。

然而,剪枝并非简单地“砍掉”一部分网络。一个粗暴的剪枝策略,例如简单地移除数值最小的权重(即传统的幅度剪枝 Magnitude Pruning, MP),往往会带来一个棘手的问题——剪枝失真(Pruning Distortion)。这指的是剪枝操作破坏了模型原有的权重分布和特征表达能力,导致模型性能(如mAP)急剧下降。如何科学地决定“剪掉哪里”以及“剪掉多少”,是剪枝技术的核心难题。

本文将深入探讨一种在2021年提出的、旨在解决上述难题的先进剪枝算法——LAMP (Layer-adaptive

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1178938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025年行业内比较好的花灯销售厂家排行榜单,机械花灯/宫灯/景区灯会/传统花灯/大型花灯,花灯供应厂家如何选 - 品牌推荐师

近年来,随着文旅夜游经济的蓬勃发展,花灯作为传统节庆与现代文旅融合的核心载体,其市场需求持续攀升。从景区夜游项目到城市文化IP打造,花灯行业正经历从“单一装饰”向“智能互动”“文化赋能”的转型。然而,行业…

YOLOv13结构优化新方案:替换GSConv,轻量化同时mAP狂涨6.56%!

绿色线条为优化后的模型,map50提升2.31个点!map50 文章目录 移植 创建ultralytics\cfg\models\v13\yolov13-GSConv.yaml 修改ultralytics\nn\tasks.py 修改ultralytics/nn/modules/__init__.py 修改ultralytics\nn\modules\block.py GSConv卷积架构深度原理解析 引言 设计背景…

【WMS】把 WMS 系统彻底讲清楚:从底层逻辑到落地细节,一篇说透

把 WMS 系统彻底讲清楚:从底层逻辑到落地细节,一篇说透一、先纠正一个根本误区:WMS ≠ 仓库自动化二、WMS 的底层逻辑,其实就三件事三、WMS 覆盖的不是“流程”,而是“决策点”四、为什么 WMS 上线后,现场反…

2026选购指南:包装全自动流水线厂家,质量如何把关?高位码垛机/全自动封箱机/立柱码垛机,流水线直销厂家口碑排行榜 - 品牌推荐师

当前,包装行业正经历智能化转型浪潮,企业对全自动流水线的需求激增。然而,市场鱼龙混杂,部分厂家以低价为噱头,实则技术滞后、售后缺失,导致设备故障频发、效率低下。如何筛选出真正具备技术实力、服务保障与商业…

RK3588 实战级 YOLOv5 Android 全解析:NPU 量化 + 多线程 + 跟踪算法,源码一次买齐

文章目录 一、项目概述与目标 为什么选择RK3588? 二、开发环境准备 硬件与软件配置 项目源码获取 三、快速上手:编译与运行 项目目录结构解析 一键运行 四、系统架构深度解析 核心挑战与解决方案 1. 相机集成挑战 2. 并发处理难题 3. 图像格式转换 4. 数据缓存管理 系统整体架…

以太坊

以太坊被称为 “世界计算机”,核心是它突破了比特币仅能处理简单价值转移的局限,靠去中心化架构、图灵完备的智能合约等技术,构建了一个全球可访问、能承载复杂计算与多样化应用的分布式计算平台。下面以计算机五层…

工商银行app很多bug ,u盾必须现场解除才能提取额度,手机上传社保卡无法识别,建议更新

工商银行app很多bug ,u盾必须现场解除才能提取额度,手机上传社保卡无法识别,建议更新

PostgreSQL实战:详细讲述UUID主键,以及如何生成无热点的分布式主键

文章目录一、分布式主键概述1.1 传统自增主键的局限性1.2 分布式主键的核心要求1.3 各方案综合对比1.4 常见误区澄清二、PostgreSQL 中 UUID 基础使用2.1 启用 UUID 支持2.2 UUID 数据类型2.3 生成 UUID 的方法三、UUIDv4 作为主键的性能陷阱:写入热点与索引碎片3.1…

YOLOv13检测效果不理想?手把手教你引入注意力机制快速提精度

文章目录 @[toc] 深度解析与实践:在YOLOv13中集成注意力机制 引言:YOLOv13与深度学习的焦点 第一章:理解注意力机制——为什么以及是什么? 1.1 为什么目标检测需要注意力机制? 1.2 注意力机制的分类与基本原理 第二章:精选注意力模块的原理与实现 2.1 模块一:Squeeze-an…

YOLOv8融合HAttention深度解析:激活像素级注意力的新范式

文章目录 《YOLOv8融合HAttention:激活更多像素的注意力机制科研实践指南》 一、为什么HAttention是像素激活的“密钥”? 二、HAttention的原理深度解析 1. 核心设计:层级化像素激活与融合 2. 与传统注意力机制的对比 三、HAttention的代码实现与YOLOv8集成 1. HAttention核…

基于深度学习的苹果新鲜度检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍 YOLOv10苹果检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类苹果的状态。该系统能够自动识别苹果并将其分类为两类:apple(正常苹果) 和…

2026年国内做得好的离婚律师机构找哪家,北京继承律师哪个好/离婚纠纷律师/北京丰台离婚律师,离婚律师机构推荐榜单 - 品牌推荐师

随着社会观念的演进与家庭结构的多元化,离婚法律服务市场正经历着深刻变革。当事人不再仅仅满足于程序性的诉讼代理,而是对法律服务的专业性、情感支持、隐私保护及财产分割方案的精细化提出了更高要求。尤其在资产构…

多模态大模型架构深度解析:模块化vs原生架构工作原理全解析

文章详细介绍了多模态大模型的两种架构:模块化架构(需连接器转译图像)和原生架构(共享底层逻辑)。解释了图像Token化的原理,对比了两种架构的工作流程、训练阶段和应用场景,指出多模态大模型的终极目标是消除模态间的"翻译感"&…

编写一个Buildroot 内核驱动

编写一个Buildroot 内核驱动PS:内核驱动只能在/kernel/drivers/目录下Makefile文件的编写主要注意Makefile文件的编写(路径,包含) 在该路径下先新建一个用户内核驱动文件夹,用于存放用户编写的驱动 user_rk3566_-k…

基于深度学习的冰箱内食物检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍 YOLOv10冰箱内部成分检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别冰箱内部的多种食物成分。该系统能够自动识别冰箱中的30种常见食物,包括水果、蔬菜、肉…

AI产品经理思维框架:从技术小白到商业落地的实战指南

文章提出了AI产品经理必备的六大思维能力框架:技术理解力、场景洞察力、数据思维、体验设计力、商业思维和伦理风险意识。强调AI产品经理不仅需要了解AI技术,更需要找到技术与商业的平衡点,将AI技术转化为解决用户问题、创造商业价值的产品。…

大模型技术全景图:从理论到应用,一篇全掌握!建议收藏

本文系统梳理了大模型技术框架,从神经网络基础到实际应用。大模型通过预训练实现智能,但存在知识更新慢和领域适应性差的问题,可通过RAG技术、微调和提示词工程解决。智能体Agent将大模型与外部工具结合实现复杂任务处理。学习大模型需系统性…

基于深度学习的苹果腐烂检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍 基于深度学习的苹果腐烂检测系统 是一个专注于检测苹果腐烂状态的智能系统,采用先进的深度学习技术(如YOLOv10或其他目标检测算法)实现高精度检测。该系统能够自动识别并定位腐烂的苹果(damaged_apple)&a…

课程论文别再凑字数!宏智树 AI 教你高效写出高分范文

作为深耕论文写作科普的教育博主,后台每天都能收到大学生的吐槽:“课程论文到底怎么写?凑够字数就被导师批没逻辑”“找文献花三天,写论文两小时,结果分数惨不忍睹”“格式改了八遍,还是不符合学术规范”。…

哈希表解决两数之和

核心代码如下: class Solution { public: vector twoSum(vector& nums, int target) { unordered_map<int, int> hashTable; for (int i = 0; i < nums.size(); ++i) { //先查询哈希表中是否存在 目标差…