基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍

YOLOv10奶牛行为检测系统是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测奶牛的行为状态。该系统能够自动识别并分类奶牛的三种主要行为:站立行走卧倒。通过该系统,用户可以实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理、提高生产效率,并为动物福利提供数据支持。

该系统在智能养殖、动物行为研究、畜牧业管理等领域具有广泛的应用前景,能够为用户提供高效、准确的奶牛行为检测解决方案。


基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+模型)

二、项目功能展示

系统功能

图片检测:可对图片进行检测,返回检测框及类别信息。

视频检测:支持视频文件输入,检测视频中每一帧的情况。

摄像头实时检测:连接USB 摄像头,实现实时监测。

参数实时调节(置信度和IoU阈值)

  • 图片检测

该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。批量图片检测

用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理,并返回每张图像的目标检测结果,适用于需要大规模处理图像数据的应用场景。

  • 视频检测

视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。

  • 摄像头实时检测

该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。

核心特点:

  • 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
  • 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
  • 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。

三、数据集介绍

数据集名称: 奶牛行为检测数据集
数据集类别: 3类
类别名称: ['站立', '行走', '卧倒']

数据集划分:

  • 训练集: 3946 张图像
    训练集用于训练YOLOv10模型,使其能够学习并识别奶牛三种行为状态的特征。训练集的图像涵盖了不同光照条件、背景环境、奶牛的不同姿态以及行为变化,以确保模型的泛化能力。

  • 验证集: 493 张图像
    验证集用于在训练过程中评估模型的性能,帮助调整超参数和防止过拟合。验证集的图像与训练集类似,但独立于训练集,确保模型在未见过的数据上也能表现良好。

  • 测试集: 493 张图像
    测试集用于最终评估模型的性能,反映模型在实际应用中的表现。测试集的图像是完全独立的,确保评估结果的客观性和准确性。

数据集特点:

  • 高质量标注: 每张图像都经过精确的标注,标注信息包括奶牛的行为类别和边界框位置,确保模型能够准确学习目标特征。

  • 多样性: 数据集中的图像涵盖了不同光照条件(如白天、夜晚)、背景环境(如室内、室外)、奶牛的不同姿态以及行为变化,确保模型能够适应各种实际场景。

  • 类别平衡: 数据集中三种行为类别的样本数量相对平衡,避免了类别不平衡问题对模型性能的影响。

应用场景:

  1. 智能养殖:
    实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理,如疾病预防、发情检测和产奶量预测。

  2. 动物行为研究:
    为动物行为研究人员提供数据支持,帮助研究奶牛的行为模式及其与健康、生产性能的关系。

  3. 畜牧业管理:
    通过检测奶牛的行为状态,优化饲养管理流程,如饲料投放、运动管理和环境改善,提高生产效率。


技术优势

  • 高精度检测: 基于YOLOv10目标检测算法,能够实现高精度的奶牛行为检测。

  • 实时性: 系统支持实时检测,能够快速处理图像并输出检测结果。

  • 鲁棒性: 模型经过多样化数据训练,能够适应不同光照条件、背景环境和奶牛姿态。

  • 易用性: 系统可部署于多种硬件平台(如嵌入式设备、监控摄像头、服务器等),满足不同场景的需求。

数据集配置文件data.yaml

train: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test nc: 3 names: ['0', '1', '2']

数据集制作流程

  • 标注数据:使用标注工具(如LabelImg、CVAT等)对图像中的目标进行标注。每个目标需要标出边界框,并且标注类别。

  • 转换格式:将标注的数据转换为YOLO格式。YOLO标注格式为每行:<object-class> <x_center> <y_center> <width> <height>,这些坐标是相对于图像尺寸的比例。

  • 分割数据集:将数据集分为训练集、验证集和测试集,通常的比例是80%训练集、10%验证集和10%测试集。

  • 准备标签文件:为每张图片生成一个对应的标签文件,确保标签文件与图片的命名一致。

  • 调整图像尺寸:根据YOLO网络要求,统一调整所有图像的尺寸(如416x416或608x608)。

四、项目环境配置

创建虚拟环境

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

终端输入

conda create -n yolov10 python==3.9

激活虚拟环境

conda activate yolov10

安装cpu版本pytorch

pip install torch torchvision torchaudio

pycharm中配置anaconda

安装所需要库

pip install -r requirements.txt

五、模型训练

训练代码

from ultralytics import YOLOv10 model_path = 'yolov10s.pt' data_path = 'datasets/data.yaml' if __name__ == '__main__': model = YOLOv10(model_path) results = model.train(data=data_path, epochs=500, batch=64, device='0', workers=0, project='runs/detect', name='exp', )
根据实际情况更换模型 yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov10s.yaml (small):小模型,适合实时任务。 yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov10b.yaml (base):基本版模型,适合大部分应用场景。 yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
  • --batch 64:每批次64张图像。
  • --epochs 500:训练500轮。
  • --datasets/data.yaml:数据集配置文件。
  • --weights yolov10s.pt:初始化模型权重,yolov10s.pt是预训练的轻量级YOLO模型。

训练结果

六、核心代码

import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal = pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parent=None): super().__init__(parent) self.model = model self.source = source self.conf = conf self.iou = iou self.running = True def run(self): try: if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头 cap = cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame = cap.read() if not ret: break # 保存原始帧 original_frame = frame.copy() # 检测 results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame = cv2.imread(self.source) if frame is not None: original_frame = frame.copy() results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(f"Detection error: {e}") finally: self.finished_signal.emit() def stop(self): self.running = False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model = None self.detection_thread = None self.current_image = None self.current_result = None self.video_writer = None self.is_camera_running = False self.is_video_running = False self.last_detection_result = None # 新增:保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name = self.model_combo.currentText() self.model = YOLOv10(f"{model_name}.pt") # 自动下载或加载本地模型 self.update_status(f"模型 {model_name} 加载成功") except Exception as e: QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}") self.update_status("模型加载失败") def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.clear_results() self.current_image = cv2.imread(file_path) self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测图片: {os.path.basename(file_path)}") def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.clear_results() self.is_video_running = True # 初始化视频写入器 cap = cv2.VideoCapture(file_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") save_path = os.path.join(save_dir, f"result_{timestamp}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测视频: {os.path.basename(file_path)}") def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return self.clear_results() self.is_camera_running = True # 创建检测线程 (默认使用摄像头0) conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status("正在从摄像头检测...") def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer = None self.is_camera_running = False self.is_video_running = False self.update_status("检测已停止") def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result = result_frame # 新增:保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer = None self.update_status("视频检测完成,结果已保存") elif self.is_camera_running: self.update_status("摄像头检测已停止") else: self.update_status("图片检测完成") def save_result(self): if not hasattr(self, 'last_detection_result') or self.last_detection_result is None: QMessageBox.warning(self, "警告", "没有可保存的检测结果") return save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"截图已保存: {save_path}") else: # 保存图片检测结果 save_path = os.path.join(save_dir, f"result_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"检测结果已保存: {save_path}") def closeEvent(self, event): self.stop_detection() event.accept() if __name__ == "__main__": app = QApplication(sys.argv) # 设置应用程序样式 app.setStyle("Fusion") # 创建并显示主窗口 window = MainWindow() window.show() sys.exit(app.exec_())

七、项目

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1178914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据不会说话?宏智树 AI:论文数据分析的 “智能翻译官”

手握几百份问卷数据、一堆实验记录&#xff0c;却不知道怎么挖掘价值&#xff1f;对着 SPSS、R 语言的教程一脸懵&#xff0c;好不容易算出结果&#xff0c;却写不出一句能支撑论文论点的分析&#xff1f;作为深耕论文写作科普的教育博主&#xff0c;后台收到最多的求助&#x…

DeepSeek V4 vs Kimi K3:国产AI大模型技术对决,谁将引领春节前的新爆发?

文章深度对比了中国两大AI大模型DeepSeek和Kimi即将推出的V4和K3版本。DeepSeek通过Engram技术优化模型架构&#xff0c;将75%资源用于推理&#xff0c;25%用于记忆&#xff0c;显著提升效率&#xff1b;Kimi则采用Kimi Linear架构挑战Transformer计算瓶颈。DeepSeek在编程和性…

ROS1 noetic 中将 Unitree G1 基于 Gazebo/RViz 关节联动【基于 ros_control】

博客地址:https://www.cnblogs.com/zylyehuo/Unitree G1 模型文件下载地址(挑选自己需要的部分,本教程基于 g1_29dof.urdf (以及 .xml 和 meshes 文件夹))有核心的 URDF 文件和 Meshes (STL 网格文件)为 Gazebo 中模…

AI 写论文哪个软件最好?实测揭秘!宏智树 AI 凭 “真研究” 实力领跑

作为深耕论文写作科普的教育测评博主&#xff0c;后台每天都被 “AI 写论文哪个软件最好” 的提问刷屏。市面上的论文工具五花八门&#xff0c;有的是 “文字拼接机”&#xff0c;生成内容空洞无物&#xff1b;有的是 “文献造假犯”&#xff0c;引用的文献查无实证&#xff1b…

基于深度学习的食物检测系统(YOLOv10+YOLO数据集+UI界面+模型)

一、项目介绍 YOLOv10过敏原食品检测系统 是一个基于YOLOv10&#xff08;You Only Look Once version 10&#xff09;目标检测算法的智能系统&#xff0c;专门用于检测和识别含有常见过敏原的食品。该系统能够自动识别30种常见过敏原食品&#xff0c;包括坚果、乳制品、蛋类、特…

零基础也能入门:AI产品经理高薪职业发展路径全解析,三步成为AI产品经理

文章分析了2025年AI大模型市场背景下产品经理的巨大职业机会&#xff0c;市场规模已突破5000亿美元&#xff0c;岗位缺口50万&#xff0c;年薪普遍30万。文章强调技术背景并非成功关键&#xff0c;通过三步法(基础认知建设、实践出真知、主动造浪)可实现转型。AI产品经理核心价…

AWS Machine Learning Specialty 证书备考经验

转&#xff1a; https://www.1point3acres.com/bbs/thread-752471-1-1.html 昨天刚刚通过了AWS ML方向的考试&#xff0c;感觉地里这个证书的备考经验还不太多&#xff0c;趁着还记得来复盘一波&#xff0c;顺便求点米&#xff01; 1. 有没有用&#xff1a; 如果有小伙伴还在考…

大模型产品经理工作全解析:从启动到衍生的评估体系方法论

文章详解了大模型产品经理的完整工作地图&#xff0c;涵盖启动期&#xff08;需求收集与基线评估&#xff09;、优化期&#xff08;模型精调与数据建设&#xff09;和衍生期&#xff08;生态构建&#xff09;。重点阐述评估体系构建方法&#xff0c;包括能力拆解、评价方法选择…

2025年泳池除湿机口碑企业排名,这几家值得信赖,泳池除湿机企业哪里有普沃泰专注产品质量 - 品牌推荐师

行业洞察:泳池除湿机市场迎来品质化竞争新阶段 随着国内游泳场馆数量年均增长12%,以及水上乐园、酒店泳池等场景的爆发式需求,泳池除湿机行业已从“功能满足”转向“品质与效率”的深度竞争。然而,市场仍存在产品同…

AI大模型就业实战营:程序员必学,薪资涨幅超50%,职场竞争力飙升!

文章强调AI时代掌握大模型能力对程序员的重要性&#xff0c;指出传统CRUD程序员正在贬值&#xff0c;而懂AI的程序员更受青睐&#xff0c;薪资涨幅可达50%以上。推荐"AI大模型—就业实战营"&#xff0c;通过2天直播课程帮助学员全面掌握大模型开发能力&#xff0c;并…

智能体化AI实战:网络安全领域的新一代技术革命与必备技能

智能体化AI通过整合存储器、工具调用及迭代决策&#xff0c;实现了从单步生成向自主推理、规划和执行的转变。在网络安全领域&#xff0c;它既增强了防御能力&#xff08;持续监测、自主响应&#xff09;&#xff0c;也强化了攻击手段&#xff08;侦察、漏洞利用&#xff09;。…

企业级AI基础设施架构:应对大模型混战的模型无关设计指南

本文探讨了在GPT-4o、Claude 3.5与Gemini等多模型混战时代&#xff0c;如何构建模型无关的企业级AI基础设施。核心内容包括统一模型接口实现、语义路由决策引擎、RAG系统向量空间对齐&#xff0c;以及智能与延迟、完整性与成本等权衡分析。文章还详细介绍了语义缓存技术&#x…

收藏必备!AI产品经理转型指南:从迷茫到高薪,3步搞定大模型时代最值得All in岗位

AI产品经理是未来最具发展前景的岗位&#xff0c;分为工具型、应用型和专业型三个层次。应用型是普通人最佳切入点&#xff0c;需通过夯实产品基本功、掌握AI项目落地能力和补充AI知识技能三步实现转型。起点课堂提供系统化学习路径&#xff0c;帮助学员成为懂业务、懂产品、懂…

企业闲置名酒变现!北京上门回收茅台五粮液,京城亚南专属服务 - 品牌排行榜单

年底了,很多北京企业开始清理闲置物品,其中就包括不少用于商务馈赠的茅台、五粮液等名酒。企业闲置名酒数量多、价值高,变现时更需要专业、靠谱的服务。京城亚南酒业针对企业客户推出专属上门回收服务,北京上门回收…

2026必备!研究生论文写作TOP8一键生成论文工具测评

2026必备&#xff01;研究生论文写作TOP8一键生成论文工具测评 2026年研究生论文写作工具测评&#xff1a;为何需要一份权威榜单&#xff1f; 随着人工智能技术的不断进步&#xff0c;学术写作工具逐渐成为研究生群体不可或缺的得力助手。然而&#xff0c;面对市场上琳琅满目的…

三色球问题

Q412.(语言: C)三色球问题。若一个口袋中放有12个球,其中有3个红,3个白和6个黑的,从中任取8个球,问共有多少种不同的颜色搭配? **输出格式要求:" RED BALL WHITE BALL BLACK BALL\n" "------…

写论文软件哪个好?实测揭秘!宏智树 AI 凭硬核实力成学术人首选

“写论文软件哪个好”—— 这大概是每届毕业生和科研党绕不开的灵魂拷问。从东拼西凑的文字生成器&#xff0c;到只能做基础校对的工具&#xff0c;市场上的论文辅助软件五花八门&#xff0c;却总让人陷入 “要么不靠谱&#xff0c;要么不全面” 的困境。作为深耕论文写作科普的…

计算机专业为什么一定要学大模型,以及如何学?2026最新AI大模型学习路线

文章提供了系统学习大模型的完整路线图&#xff0c;从数学基础、编程能力开始&#xff0c;经过机器学习和深度学习阶段&#xff0c;最终探索大模型技术。详细列出了各阶段的学习内容、推荐资源和实践项目&#xff0c;并提供学习资源包&#xff0c;包括学习路线、研究报告、经典…

方法兰定制新风向:2026年注重口碑与工艺的推荐,SAE法兰/内螺纹法兰/分体法兰/扩口法兰,方法兰推荐排行有哪些 - 品牌推荐师

随着国内液压系统向高精度、高可靠性方向升级,方法兰作为液压管路连接的核心部件,其定制化需求持续攀升。2026年,行业对供应商的口碑、工艺稳定性及响应效率提出更高要求。据第三方调研机构数据显示,近三年方法兰定…

2026年必吃榜:热门烧菜火锅店深度测评,烧菜火锅/火锅/美食/社区火锅/特色美食,烧菜火锅品牌有哪些 - 品牌推荐师

行业洞察:烧菜火锅为何成为餐饮新风口? 近年来,烧菜火锅凭借“现烧菜品+火锅涮煮”的创新模式,在川渝火锅市场中异军突起。其核心优势在于通过现制烧菜提升菜品附加值,同时以“一菜两吃”的差异化体验满足消费者对…