企业效率提升300%?Open-AutoGLM自动化任务落地实践

企业效率提升300%?Open-AutoGLM自动化任务落地实践

1. 引言:从自然语言到自动执行的智能跃迁

在移动办公和数字生活日益复杂的今天,用户每天需要在手机上重复大量操作:打开App、搜索内容、填写表单、切换账号……这些看似简单的任务累积起来,极大消耗了时间和注意力。如何让AI真正“动手”替我们完成这些流程?Open-AutoGLM的出现给出了答案。

作为智谱开源的手机端AI Agent框架,Open-AutoGLM基于视觉语言模型(VLM)构建,能够理解屏幕语义,并通过ADB实现对安卓设备的全自动控制。用户只需用一句自然语言指令,如“打开小红书搜索美食”,系统即可自动解析意图、识别界面元素、规划操作路径并执行点击、滑动、输入等动作,全程无需人工干预。

这一技术不仅适用于个人效率工具开发,更在企业级场景中展现出巨大潜力——例如自动化测试、客服机器人远程操作、批量账号管理等。本文将深入探讨 Open-AutoGLM 的核心机制,并结合真实部署案例,展示其在实际项目中的完整落地流程。

2. 技术架构解析:多模态感知 + 智能决策 + 自动化执行

2.1 核心组件与工作流

Open-AutoGLM 的核心技术栈由三大模块构成:

  • 视觉语言模型(VLM):负责“看懂”手机屏幕。模型接收当前屏幕截图与用户指令,输出结构化的操作建议。
  • ADB 控制层:作为执行引擎,通过 Android Debug Bridge 实现对设备的点击、滑动、文本输入等底层操作。
  • 任务规划器:根据模型输出的动作序列进行逻辑校验与优化,确保操作连贯且符合应用交互规律。

整个流程如下:

  1. 用户输入自然语言指令;
  2. 系统截取当前手机屏幕图像;
  3. 将图像与指令拼接为多模态输入,送入 VLM;
  4. 模型输出目标操作(如“点击位于坐标(540,800)的‘搜索’按钮”);
  5. ADB 执行该操作;
  6. 循环上述过程直至任务完成。

2.2 多模态理解的关键设计

传统自动化脚本依赖固定UI控件ID或坐标,极易因版本更新而失效。而 Open-AutoGLM 使用视觉语言模型直接理解屏幕内容,具备更强的泛化能力。

以“打开抖音并关注某博主”为例,模型需完成以下推理:

  • 屏幕中是否存在“抖音”图标?→ 是 → 点击启动
  • 当前页面是否为首页?→ 是 → 查找顶部搜索框
  • 输入框附近是否有“放大镜”符号?→ 是 → 点击进入搜索
  • 输入指定抖音号 → 触发搜索 → 进入结果页
  • 查找“关注”按钮 → 判断是否已关注 → 若未关注则点击

这种基于语义的理解方式,使得系统能在不同品牌、分辨率甚至暗黑模式下稳定运行。

2.3 安全与可控性机制

考虑到自动化操作可能涉及敏感行为(如支付、删除数据),Open-AutoGLM 内置多重安全策略:

  • 敏感操作拦截:当检测到“付款”、“删除联系人”等高风险关键词时,暂停执行并提示用户确认;
  • 人工接管支持:在验证码、登录弹窗等AI无法处理的场景下,允许用户临时介入;
  • 操作日志记录:所有动作均被记录,便于审计与回溯;
  • 远程调试通道:支持通过WiFi连接设备,避免物理接触,适合远程运维。

3. 工程实践:本地控制端部署全流程

3.1 硬件与环境准备

要成功运行 Open-AutoGLM,需满足以下基础条件:

组件要求
操作系统Windows / macOS
Python 版本3.10 或以上
安卓设备Android 7.0+ 手机或模拟器
ADB 工具已配置环境变量
ADB 配置说明

Windows 用户

  1. 下载 Android SDK Platform Tools 并解压;
  2. Win + R输入sysdm.cpl→ 高级 → 环境变量;
  3. 在“系统变量”中找到Path,添加 ADB 解压目录路径;
  4. 打开命令行,执行adb version验证安装。

macOS 用户

# 假设 platform-tools 解压至 Downloads 目录 export PATH=${PATH}:~/Downloads/platform-tools

可将该命令写入.zshrc.bash_profile实现永久生效。

3.2 手机端设置步骤

  1. 开启开发者模式
    设置 → 关于手机 → 连续点击“版本号”7次,提示“您现在是开发者”。

  2. 启用 USB 调试
    设置 → 开发者选项 → 启用“USB 调试”。

  3. 安装 ADB Keyboard

    • 下载 ADB Keyboard APK 并安装;
    • 进入“语言与输入法”设置,将默认输入法切换为 ADB Keyboard;
    • 此输入法允许通过 ADB 发送文本,解决中文输入难题。

3.3 部署 Open-AutoGLM 控制端

在本地电脑执行以下命令:

# 克隆仓库 git clone https://github.com/zai-org/Open-AutoGLM cd Open-AutoGLM # 安装依赖 pip install -r requirements.txt pip install -e .

注意:建议使用虚拟环境(venv 或 conda)隔离依赖,避免包冲突。

3.4 设备连接方式详解

USB 连接(推荐用于调试)

确保手机通过 USB 线连接电脑后,运行:

adb devices

若输出类似:

List of devices attached ABCDEF1234567890 device

表示设备已识别,可继续后续操作。

WiFi 远程连接(适合生产环境)

对于远程服务器调用场景,可通过 TCP/IP 模式连接:

# 第一步:使用 USB 连接并开启 ADB over TCP/IP adb tcpip 5555 # 第二步:断开 USB,通过 IP 连接 adb connect 192.168.x.x:5555

此后即使拔掉数据线,仍可通过网络控制设备。

提示:首次必须使用 USB 连接激活 TCP/IP 模式。

4. 启动 AI 代理:两种调用方式实战

4.1 命令行方式快速体验

在项目根目录下运行主程序:

python main.py \ --device-id ABCDEF1234567890 \ --base-url http://123.45.67.89:8800/v1 \ --model "autoglm-phone-9b" \ "打开抖音搜索抖音号为:dycwo11nt61d 的博主并关注他!"

参数说明:

参数说明
--device-id通过adb devices获取的设备唯一标识
--base-url云端 vLLM 服务地址(需公网可达)
--model指定使用的模型名称
最后字符串用户自然语言指令

该命令会启动一个循环:截图 → 推理 → 执行 → 再截图,直到任务完成或超时。

4.2 Python API 方式集成进系统

对于企业级应用,通常需要将 AutoGLM 集成进现有平台。以下是标准 API 调用示例:

from phone_agent.adb import ADBConnection, list_devices # 创建 ADB 连接管理器 conn = ADBConnection() # 连接远程设备 success, message = conn.connect("192.168.1.100:5555") print(f"连接状态: {message}") # 列出所有已连接设备 devices = list_devices() for device in devices: print(f"{device.device_id} - {device.connection_type.value}") # 启用 TCP/IP 模式(仅限 USB 连接时) success, message = conn.enable_tcpip(5555) if success: ip = conn.get_device_ip() print(f"设备 IP: {ip}") # 断开连接 conn.disconnect("192.168.1.100:5555")

此接口可用于构建 Web 控制台、调度系统或多设备集群管理系统。

5. 常见问题与优化建议

5.1 典型问题排查指南

问题现象可能原因解决方案
adb devices无设备显示USB调试未开启检查开发者选项
连接被拒绝 (Connection Refused)云服务防火墙未放行端口开启安全组规则,开放 8800 等映射端口
ADB 频繁掉线WiFi 信号不稳定改用 USB 连接或优化网络环境
模型返回乱码或空响应vLLM 启动参数不匹配检查max_model_len、显存分配是否充足
中文输入失败ADB Keyboard 未设为默认输入法进入设置手动切换

5.2 性能优化建议

  1. 降低截图频率:非关键步骤可延长等待时间,减少GPU负载;
  2. 缓存历史状态:避免重复识别相同界面;
  3. 预加载常用路径:对高频任务(如登录流程)建立模板,提升响应速度;
  4. 分布式部署:多个设备对应多个边缘计算节点,避免单点瓶颈。

6. 总结

Open-AutoGLM 代表了一种全新的自动化范式:从“规则驱动”走向“语义驱动”。它不再依赖硬编码的XPath或坐标,而是通过视觉语言模型动态理解界面,实现了真正的“通用手机助手”能力。

本文详细介绍了 Open-AutoGLM 的技术原理、部署流程与工程实践要点,涵盖从环境搭建、设备连接到API调用的完整链路。无论是个人开发者尝试AI自动化,还是企业构建批量操作平台,这套方案都提供了坚实的技术基础。

未来,随着多模态模型能力的持续增强,这类手机端AI Agent有望在更多领域落地:自动化客服、跨App信息聚合、无障碍辅助、移动端RPA等。而开源社区的积极参与,也将加速其生态成熟。


获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1175718.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Spark的大数据日志分析系统设计与实现

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

Hunyuan模型能商用吗?Apache许可商业落地指南

Hunyuan模型能商用吗?Apache许可商业落地指南 1. 引言:企业级翻译需求与Hunyuan的定位 在跨国业务拓展、内容本地化和多语言客户服务等场景中,高质量的机器翻译能力已成为企业数字化基础设施的重要组成部分。传统云服务API虽便捷&#xff0…

Hunyuan-MT-7B-WEBUI文化保护:助力少数民族语言数字化传承

Hunyuan-MT-7B-WEBUI文化保护:助力少数民族语言数字化传承 1. 引言 随着全球化进程的加速,语言多样性正面临前所未有的挑战。据联合国教科文组织统计,全球约有40%的语言处于濒危状态,其中少数民族语言尤为脆弱。语言不仅是交流工…

实战OpenCode:用Qwen3-4B快速实现智能代码补全

实战OpenCode:用Qwen3-4B快速实现智能代码补全 在AI编程助手日益普及的今天,开发者对响应速度、模型灵活性和隐私安全的要求越来越高。OpenCode 作为一款终端优先、支持多模型、可完全离线运行的开源 AI 编程框架,凭借其轻量架构与强大扩展能…

手把手教你完成USB转485驱动程序Windows平台下载

从零搞定USB转485通信:驱动安装、硬件识别与实战调试全解析 你有没有遇到过这样的场景?手握一块USB转485模块,连上电脑后设备管理器里却只显示“未知设备”;或者明明识别了COM口,但用串口助手发数据就是没反应。更头疼…

bge-large-zh-v1.5性能优化:提升embedding服务效率的7个技巧

bge-large-zh-v1.5性能优化:提升embedding服务效率的7个技巧 随着大模型应用在语义理解、检索增强生成(RAG)和向量数据库构建等场景中的广泛落地,高效稳定的Embedding服务成为系统性能的关键瓶颈之一。bge-large-zh-v1.5作为一款…

AI智能文档扫描仪环境部署:Python+OpenCV免配置快速启动

AI智能文档扫描仪环境部署:PythonOpenCV免配置快速启动 1. 引言 1.1 业务场景描述 在日常办公、学习或财务报销中,我们经常需要将纸质文档、发票、合同或白板笔记转换为电子版。传统方式依赖专业扫描仪或手动裁剪照片,效率低且效果差。而市…

自动驾驶感知模块搭建:用YOLOv13镜像快速验证

自动驾驶感知模块搭建:用YOLOv13镜像快速验证 1. 引言 1.1 业务场景描述 在自动驾驶系统中,感知模块是实现环境理解的核心组件。其主要任务是从摄像头、激光雷达等传感器数据中识别和定位行人、车辆、交通标志等关键目标,为后续的决策与控…

Qwen3-VL-2B-Instruct缓存机制优化:减少重复计算教程

Qwen3-VL-2B-Instruct缓存机制优化:减少重复计算教程 1. 引言 1.1 业务场景描述 在多轮对话、视觉代理任务和长上下文推理等实际应用中,Qwen3-VL-2B-Instruct 模型需要频繁处理相似或重复的输入内容。例如,在 GUI 操作代理场景中&#xff…

verl版本管理:模型与代码同步更新的最佳实践

verl版本管理:模型与代码同步更新的最佳实践 1. verl 介绍 verl 是一个灵活、高效且可用于生产环境的强化学习(RL)训练框架,专为大型语言模型(LLMs)的后训练设计。它由字节跳动火山引擎团队开源&#xff…

TurboDiffusion最佳实践:高效提示词编写模板与技巧

TurboDiffusion最佳实践:高效提示词编写模板与技巧 1. 引言 1.1 视频生成的技术演进与挑战 近年来,文生视频(Text-to-Video, T2V)和图生视频(Image-to-Video, I2V)技术迅速发展,成为AI内容创…

Qwen3-VL-WEB调度系统:任务队列与优先级管理实战

Qwen3-VL-WEB调度系统:任务队列与优先级管理实战 1. 引言:Qwen3-VL-WEB 的核心定位与业务挑战 随着多模态大模型在视觉理解、图文生成和交互式推理等场景的广泛应用,如何高效调度高并发的网页端推理请求成为工程落地的关键瓶颈。Qwen3-VL-W…

ES客户端在多租户架构中的集成策略解析

如何让 ES 客户端在多租户系统中既安全又高效?一线架构师的实战拆解 你有没有遇到过这样的场景: 一个 SaaS 平台上线不到半年,租户数量从几十涨到上千,日志查询接口突然频繁超时。排查发现,某个“大客户”一口气查了三…

混元翻译模型部署:HY-MT1.5-1.8B容器化方案

混元翻译模型部署:HY-MT1.5-1.8B容器化方案 1. 引言 随着多语言交流需求的不断增长,高质量、低延迟的翻译服务已成为智能应用的核心能力之一。混元翻译模型(Hunyuan Machine Translation, HY-MT)系列在多个国际评测中表现出色&a…

GLM-4.6V-Flash-WEB媒体行业:新闻图片自动生成标题系统

GLM-4.6V-Flash-WEB媒体行业:新闻图片自动生成标题系统 1. 技术背景与应用场景 随着数字媒体内容的爆炸式增长,新闻机构每天需要处理海量的图像素材。传统的人工撰写图片标题方式效率低、成本高,难以满足实时性要求。自动化图像描述生成&am…

视觉AI商业化落地:Qwen3-VL-2B实战案例解析

视觉AI商业化落地:Qwen3-VL-2B实战案例解析 1. 引言:视觉AI的商业价值与技术演进 随着人工智能从纯文本交互向多模态理解演进,视觉语言模型(Vision-Language Model, VLM)正成为企业智能化升级的关键技术。传统客服、…

usb_burning_tool刷机工具界面功能通俗解释

深入拆解usb_burning_tool刷机工具:从界面小白到实战高手 你有没有遇到过这样的场景?手里的电视盒子突然开不了机,ADB连不上,Recovery也进不去,只能干瞪眼看着它变“砖”?或者你在做固件升级时反复失败&…

PDF-Extract-Kit在金融报表分析中的应用场景全解析

PDF-Extract-Kit在金融报表分析中的应用场景全解析 1. 引言:金融报表处理的挑战与技术演进 在金融行业,年报、季报、财务附注等文档通常以PDF格式发布。这些文件包含大量结构化信息,如财务报表、指标数据、公式推导和文本说明。然而&#x…

从0开始学图像修复:lama模型使用全攻略

从0开始学图像修复:lama模型使用全攻略 1. 学习目标与前置知识 本文旨在为初学者提供一套完整的 lama 图像修复模型使用指南,帮助您从零开始掌握如何通过 WebUI 界面完成图像修复任务。无论您是 AI 新手还是有一定基础的开发者,都能快速上手…

AI智能证件照制作工坊能否集成人脸识别?未来升级方向

AI智能证件照制作工坊能否集成人脸识别?未来升级方向 1. 引言:AI 智能证件照制作工坊的技术背景与业务需求 随着数字化办公、在线身份认证和远程服务的普及,对高质量、标准化证件照的需求日益增长。传统照相馆流程繁琐、成本高,…