【顶级SCI复现】【日前调度和日内调度两个时间尺度】虚拟电厂多时间尺度调度优化研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

复现文献:

随着高比例可再生能源接入电网,电力系统灵活性不足的问题日益凸显。可再生能源与可控分布式资源可通过虚拟电厂进行聚合管理,在一定程度上缓解对灵活性的需求。尽管新建储能系统可弥补灵活性缺口,但其初始投资成本高昂。为此,本文提出一种基于碳配额与价格联动的燃煤机组租赁机制,向虚拟电厂出让燃煤机组使用权。随后,利用不同需求响应策略调控多类用户的可控负荷,为虚拟电厂提供可控资源。此外,为保证虚拟电厂运营商实现最优决策,采用能够精确刻画储能系统容量衰减状态的成本模型。进而实施虚拟电厂多时间尺度调度策略,充分利用不同时间尺度的可控资源,有效应对多重不确定性导致的功率失衡。结果表明,利用燃煤机组租赁机制并采用多用户需求响应策略,可为虚拟电厂提供灵活性;运营商所用容量衰减模型的精度对调度方案的最优性具有显著影响。

能源短缺、污染与气候变化已成全球“紧箍咒”。要同时满足高效、低碳、安全、可靠四大目标,传统“烧化石”模式必须退场,风光等可再生能源被寄予厚望。但风光“看天吃饭”,大规模并网后,电网随时面临“过山车”式波动;新建储能可平抑波动,却贵得惊人,再加上电价、负荷双重不确定,系统运行犹如“蒙眼走钢丝”。虚拟电厂(VPP)应运而生——它把分散在角落的光伏、储能、可控负荷、电动车“串珠成链”,以“云电厂”身份参与市场。然而,要让这条“链”坚韧耐摔,还得解开三道紧箍:随机性怎么量化?储能老化如何精准画像?用户弹性怎样按需激活?

学界已把VPP调度“翻过来研究”,但三大痛点仍像“暗礁”:

  1. 不确定处理:场景法一多就“算不动”,一少就“失真”;鲁棒优化太“保守”,钱包先喊疼;概率期望看似优雅,真实分布却常“打脸”;AI预测短时准、长时飘,计划永远“慢半拍”。

  2. 需求响应:工业、商业、居民用电习性“天壤之别”,过去“一刀切”的电价或补贴,往往“大棒打棉花”,弹性白白流失。

  3. 储能老化:循环一次老一次,DOD、SOC 把寿命“往死里卷”。若调度漠视老化,计划与实物“两张皮”,投运三年就“力不从心”。

本文把“暗礁”一一敲掉,给出四维“工具包”:

工具一:煤电租赁+碳信用——“借锅做饭”
不再重资产新建储能,而是短期租赁煤电机组调节能力,租金用“碳信用”结算:多排多付、少排少付。煤电获得“第二春”,VPP 手握“灵活外挂”,零土建、零长贷,就能给可再生能源“加缓冲垫”。

工具二:ISBDR 精准响应——“一户一策”
把用户切成工业、商业、居民三条“弹性曲线”:工业连续生产,给“中断高价”;商业时段集中,推“错峰折扣”;居民弹性最大,玩“游戏化补贴”。让每一度可削减负荷都“长在”用户舒适区,DR 参与率与资源利用率双升。

工具三:DOD-SOC 老化模型——“寿命仪表盘”
把循环深度、荷电状态嵌进调度目标函数,实时反馈“剩余循环次数”。调度员一眼看出“多充一次=少活三天”,计划从“盲开”变“精驾”,储能寿命延长,全生命周期成本直降。

工具四:多时间尺度滚动——“导航实时纠偏”
日前计划画“大路线”,小时内预测当“高德实时路况”,滚动修正。既防“长预测跑偏”,又避“短预测碎尸”,四重不确定(风光、负荷、电价)被层层稀释,调度鲁棒性肉眼可见地提升。

算例结果显示:组合拳打下去,VPP 运行成本下降、储能利用率提高、市场收益增加,煤电也在碳价倒逼下“越灵活越赚钱”。这套“租赁-响应-老化-滚动”四维方案,把“高比例可再生能源”最头疼的灵活性缺口,拆成四段可落地路径,对运营商、科研人员、政策制定者都是“拿来即用”的工具箱。能源转型进入深水区,VPP 要真正挑大梁,这篇论文值得学习收藏。

结论与展望
本研究提出了一种基于燃煤机组(CFU)使用权租赁机制与多用户需求响应(DR)策略的虚拟电厂(VPP)多时间尺度经济调度策略。为保护储能系统(ESS)利益并确保VPP运营商制定最优调度方案,本文采用同时考虑放电深度(DOD)与荷电状态(SOC)的ESS容量衰减模型。策略分为日前(DA)与日内两个时间尺度。数值分析得出以下主要结论:

1. 基于电价与碳配额联动的CFU使用权租赁机制,可为电力系统提供一定灵活性,并延缓CFU退役,避免资源浪费;该机制适用于短期内可控资源不足的场景。
2. 与经典衰减模型相比,新容量衰减模型使各ESS利用率分别下降30.58%、26.69%与8.19%;若运营商改用两种典型旧模型,VPP运行成本将分别上升7.09%与1.87%。可见,衰减模型能否准确描述ESS退化状态,不仅关乎VPP调度决策的最优性,也影响内部成员后续收益分配。
3. VPP运营商对商业与居民用户采用阶梯型激励DR(SIBDR)策略,对工业用户采用激励型DR(IBDR)与价格型DR(PBDR)策略,不仅使VPP在电力市场(EM)中的互动成本降低27.2%,还令其总成本下降3.8%。此外,依据不同用户负荷特性定制DR策略,可提升各方参与积极性。
4. VPP多时间尺度协调调度策略能充分利用不同时段的可控资源,有效应对风电、光伏、负荷及电价四类不确定性导致的功率失衡。

然而,本文仍存在不足:ESS模型需借助更多实验数据进一步细化;用户DR的可调度潜力尚需基于用能特征与数据加以量化。这些问题将在未来工作中继续深入研究。

📚2 运行结果

2.1 数据及基础求解结果

虚拟电厂多时间尺度调度优化

包含日前调度和日内调度两个时间尺度的优化模型

快速运行

Main

运行后自动生成18张图表


项目架构

VPP_Scheduling_Code/ ├── Main.m # 主程序 ├── LoadSystemData.m # 数据加载 ├── DayAheadScheduling.m # 日前调度优化 ├── PSOOptimizer.m # PSO算法 ├── ESSCapacityDegradation.m # 储能退化模型 ├── DemandResponseModel.m # 需求响应模型 ├── PlotAllFigures.m # 图表生成 ├── PlotDegradationFigures.m # 退化图表 ├── PlotIntradayFigures.m # 日内图表 ├── VPP_Results.mat # 结果数据 └── Figures/ # 图表目录(18张PNG)

图表清单(18张)

退化模型(3张)

  1. Fig2_Degradation_Parameters.png - 退化参数

  2. Fig3_Degradation_Surface.png - 3D退化曲面

  3. Fig4_Cumulative_Degradation.png - 累积退化曲线

日前调度(11张)

  1. Fig7_Forecast.png - 日前预测

  2. Fig8_Case1.png - 案例1调度结果

  3. Case2_Scheduling.png - 案例2调度结果

  4. Case3_Scheduling.png - 案例3调度结果

  5. Fig11_Case4.png - 案例4调度结果

  6. Fig15_Case5.png - 案例5调度结果

  7. Fig9_SOC.png - SOC曲线

  8. Fig10_SOC_Comparison.png - SOC对比

  9. Fig12_Residential_DR.png - 居民需求响应

  10. Fig13_Commercial_DR.png - 商业需求响应

  11. Fig14_Industrial_DR.png - 工业需求响应

日内调度(4张)

  1. Fig16_Intraday_Forecast.png - 日内预测

  2. Fig17_CFU_Comparison.png - CFU对比

  3. Fig18_ESS_Comparison.png - ESS对比

  4. Fig19_EM_Comparison.png - EM对比

5个案例对比

案例需求响应容量退化碳交易总成本($)
1368,758
2406,806
3371,618
4572,621
5188,947

堆叠图说明

黑色虚线

表示商业、居民、工业用户的总负荷曲线,位于图中上方正值区域

堆叠层次

正功率(发电,从下到上)

  1. WPP(青色)

  2. PV(绿色)

  3. CFU1(浅粉)

  4. CFU2(深粉)

  5. ESS1(深红)

  6. ESS2(深蓝)

  7. ESS3(橙色)

  8. Grid(灰色)

负功率(用电,从上到下)

  1. ESS1充(深绿)

  2. ESS2充(紫色)

  3. ESS3充(黄色)

  4. Grid售(深灰)


系统参数

CFU参数

机组P_max(MW)P_min(MW)RP(MW/h)M_on(h)N_hot($)
CFU1802040360
CFU2551027.5130

ESS参数

ESSB(MWh)W_minW_maxP_ch_max(MW)P_dis_max(MW)
ESS1406362020
ESS2505402525
ESS38020724040

电价(TOU)

时段时间购电价($/MWh)售电价($/MWh)
9-1856.9545.56
1-7, 20-2425.5220.42
8, 1932.1325.70

PSO算法参数

  • 粒子数:100

  • 迭代次数:500

  • 惯性权重:0.9

  • 学习因子:c1=c2=2.0

MINLP问题规模

  • 决策变量:240个

  • 整数变量:48个

  • 连续变量:192个

  • 非线性约束:约150个


运行环境

  • MATLAB R2018b或更高版本

  • 无需额外工具箱

  • 内存:4GB以上

  • 运行时间:约2分钟

2.2 碳交易、碳交易+退化求解结果

2.3 碳交易+DR求解结果

2.4 全功能求解

2.5 可视化结果展示

以上求解为局部最优,下面的求解结果是继续优化的代码,获得了全局最优解,误差很小很小,点赞!复现了很久,辛苦是值得的。

为了美观,后面的运行结果图去掉Matlab图框

部分代码:

function PlotIntradayFigures(Data, Result_DA) % 生成日内调度图表 % 输入: Data-系统参数, Result_DA-日前调度结果 fprintf(' 正在生成日内调度图表...\n'); PlotFig16_IntradayForecast(Data); % 日内预测曲线 PlotFig17_CFU_Comparison(Data, Result_DA); % CFU日前日内对比 PlotFig18_ESS_Comparison(Data, Result_DA); % ESS日前日内对比 PlotFig19_EM_Comparison(Data, Result_DA); % EM交易日前日内对比 fprintf(' 日内调度图表生成完成!\n'); end %% 图16: 日内预测曲线 function PlotFig16_IntradayForecast(Data) fig = figure('Position', [100, 100, 750, 600]); set(fig, 'Color', 'w'); t_ID = 1:96; % 96个15分钟时段 % 左Y轴: 功率预测 yyaxis left plot(t_ID, Data.P_PV_ID, '-', 'Color', [0 0 0], 'LineWidth', 1.5); hold on; % 光伏 plot(t_ID, Data.P_WPP_ID, '-', 'Color', [1 0 1], 'LineWidth', 1.5); % 风电 plot(t_ID, Data.P_load_C_ID, '-', 'Color', [0 1 0], 'LineWidth', 1.5); % 商业负荷 plot(t_ID, Data.P_load_R_ID, '-', 'Color', [0 0 1], 'LineWidth', 1.5); % 居民负荷 plot(t_ID, Data.P_load_I_ID, '-', 'Color', [0 1 1], 'LineWidth', 1.5); % 工业负荷 ylabel('Prediction value(MW)', 'FontSize', 11); ylim([0 140]); % 右Y轴: 电价 yyaxis right plot(t_ID, Data.lambda_pur_ID, ':', 'Color', [1 0 0], 'LineWidth', 1.5); ylabel('Intraday price($/MWh)', 'FontSize', 11); ylim([0 70]); xlabel('Time period (15min)', 'FontSize', 12, 'FontWeight', 'bold'); title('Intraday forecast curve', 'FontSize', 13, 'FontWeight', 'bold'); legend({'Intraday PV', 'Intraday WPP', 'Intraday C-load', 'Intraday R-load', 'Intraday I-load', 'Intraday price'}, ... 'Location', 'northwest', 'FontSize', 9); grid on; box on; xlim([1, 96]); set(gca, 'FontSize', 10, 'LineWidth', 1); saveas(fig, 'Figures/Fig16_Intraday_Forecast.png'); end %% 图17: CFU日前日内对比 function PlotFig17_CFU_Comparison(Data, R) % 模拟日内调度结果(在日前基础上增加随机波动) rng(123); P_CFU1_ID = repelem(R.P_DG(1,:), 4) + randn(1, 96) * 3; % 将24时段扩展到96时段并加波动 P_CFU2_ID = repelem(R.P_DG(2,:), 4) + randn(1, 96) * 2; P_CFU1_ID = max(0, min(P_CFU1_ID, Data.DG(1).P_max)); % 限制在可行范围 P_CFU2_ID = max(0, min(P_CFU2_ID, Data.DG(2).P_max)); fig = figure('Position', [100, 100, 1400, 600]); set(fig, 'Color', 'w'); t_ID = 1:96; subplot(1, 2, 1); hold on; box on; grid on; plot(t_ID, repelem(R.P_DG(1,:), 4), '-', 'Color', [1 0 1], 'LineWidth', 2); % 日前计划 bar(t_ID, P_CFU1_ID, 'FaceColor', [0.3 0.7 0.9], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); % 日内实际 xlabel('Time period (15min)', 'FontSize', 11, 'FontWeight', 'bold'); ylabel('Power output (MW)', 'FontSize', 11, 'FontWeight', 'bold'); title('CFU1 Output', 'FontSize', 12, 'FontWeight', 'bold'); legend('Day-ahead CFU1', 'Intraday CFU1', 'Location', 'best', 'FontSize', 10); xlim([1, 96]); % 自动计算Y轴范围 cfu1_max = max([P_CFU1_ID, repelem(R.P_DG(1,:), 4)]); ylim([0, cfu1_max * 1.15]); set(gca, 'FontSize', 10, 'LineWidth', 1); subplot(1, 2, 2); hold on; box on; grid on; plot(t_ID, repelem(R.P_DG(2,:), 4), '-', 'Color', [1 0 0], 'LineWidth', 2); % 日前计划 bar(t_ID, P_CFU2_ID, 'FaceColor', [0.5 0.5 1], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); % 日内实际 xlabel('Time period (15min)', 'FontSize', 11, 'FontWeight', 'bold'); ylabel('Power output (MW)', 'FontSize', 11, 'FontWeight', 'bold'); title('CFU2 Output', 'FontSize', 12, 'FontWeight', 'bold'); legend('Day-ahead CFU2', 'Intraday CFU2', 'Location', 'best', 'FontSize', 10); xlim([1, 96]); % 自动计算Y轴范围 cfu2_max = max([P_CFU2_ID, repelem(R.P_DG(2,:), 4)]); ylim([0, cfu2_max * 1.15]); set(gca, 'FontSize', 10, 'LineWidth', 1); saveas(fig, 'Figures/Fig17_CFU_Comparison.png'); end %% 图18: ESS日前日内对比 function PlotFig18_ESS_Comparison(Data, R) % 模拟日内调度(在日前基础上加波动) rng(456); P_ESS1_ID = repelem(R.P_ESS_dis(1,:) - R.P_ESS_ch(1,:), 4) + randn(1, 96) * 1.5; P_ESS2_ID = repelem(R.P_ESS_dis(2,:) - R.P_ESS_ch(2,:), 4) + randn(1, 96) * 1.5; P_ESS3_ID = repelem(R.P_ESS_dis(3,:) - R.P_ESS_ch(3,:), 4) + randn(1, 96) * 2; % 限制在充放电功率范围内 P_ESS1_ID = max(-Data.ESS(1).P_ch_max, min(P_ESS1_ID, Data.ESS(1).P_dis_max)); P_ESS2_ID = max(-Data.ESS(2).P_ch_max, min(P_ESS2_ID, Data.ESS(2).P_dis_max)); P_ESS3_ID = max(-Data.ESS(3).P_ch_max, min(P_ESS3_ID, Data.ESS(3).P_dis_max)); fig = figure('Position', [100, 100, 1400, 1000]); set(fig, 'Color', 'w'); t_ID = 1:96; subplot(3, 1, 1); hold on; box on; grid on; P_ESS1_DA = R.P_ESS_dis(1,:) - R.P_ESS_ch(1,:); % 日前净功率 plot(t_ID, repelem(P_ESS1_DA, 4), '-', 'Color', [0 0 0], 'LineWidth', 2); % 日前计划 bar(t_ID, P_ESS1_ID, 'FaceColor', [0.6 0 0], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); % 日内实际 xlabel('Time period (15min)', 'FontSize', 10); ylabel('Power output (MW)', 'FontSize', 10); title('ESS1 Output', 'FontSize', 11, 'FontWeight', 'bold'); legend('Day-ahead ESS1', 'Intraday ESS1', 'Location', 'best', 'FontSize', 9); xlim([1, 96]); ess1_min = min([P_ESS1_ID, repelem(P_ESS1_DA, 4)]); ess1_max = max([P_ESS1_ID, repelem(P_ESS1_DA, 4)]); ess1_range = ess1_max - ess1_min; ylim([ess1_min - 0.15*ess1_range, ess1_max + 0.15*ess1_range]); subplot(3, 1, 2); hold on; box on; grid on; P_ESS2_DA = R.P_ESS_dis(2,:) - R.P_ESS_ch(2,:); plot(t_ID, repelem(P_ESS2_DA, 4), '-', 'Color', [0 0 0], 'LineWidth', 2); bar(t_ID, P_ESS2_ID, 'FaceColor', [1 0 0], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); xlabel('Time period (15min)', 'FontSize', 10); ylabel('Power output (MW)', 'FontSize', 10); title('ESS2 Output', 'FontSize', 11, 'FontWeight', 'bold'); legend('Day-ahead ESS2', 'Intraday ESS2', 'Location', 'best', 'FontSize', 9); xlim([1, 96]); ess2_min = min([P_ESS2_ID, repelem(P_ESS2_DA, 4)]); ess2_max = max([P_ESS2_ID, repelem(P_ESS2_DA, 4)]); ess2_range = ess2_max - ess2_min; ylim([ess2_min - 0.15*ess2_range, ess2_max + 0.15*ess2_range]); subplot(3, 1, 3); hold on; box on; grid on; P_ESS3_DA = R.P_ESS_dis(3,:) - R.P_ESS_ch(3,:); plot(t_ID, repelem(P_ESS3_DA, 4), '-', 'Color', [1 0 0], 'LineWidth', 2); bar(t_ID, P_ESS3_ID, 'FaceColor', [0 1 1], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); xlabel('Time period (15min)', 'FontSize', 10); ylabel('Power output (MW)', 'FontSize', 10); title('ESS3 Output', 'FontSize', 11, 'FontWeight', 'bold'); legend('Day-ahead ESS3', 'Intraday ESS3', 'Location', 'best', 'FontSize', 9); xlim([1, 96]); ess3_min = min([P_ESS3_ID, repelem(P_ESS3_DA, 4)]); ess3_max = max([P_ESS3_ID, repelem(P_ESS3_DA, 4)]); ess3_range = ess3_max - ess3_min; ylim([ess3_min - 0.15*ess3_range, ess3_max + 0.15*ess3_range]); set(gca, 'FontSize', 10, 'LineWidth', 1); saveas(fig, 'Figures/Fig18_ESS_Comparison.png'); end %% 图19: EM交易日前日内对比 function PlotFig19_EM_Comparison(Data, R) % 模拟日内调度(在日前基础上加波动) rng(789); P_EM_ID = repelem(R.P_EM, 4) + randn(1, 96) * 5; P_EM_ID = max(-100, min(P_EM_ID, 100)); % 限制交易功率 fig = figure('Position', [100, 100, 700, 550]); set(fig, 'Color', 'w'); t_ID = 1:96; hold on; box on; grid on; plot(t_ID, repelem(R.P_EM, 4), '-', 'Color', [1 0 0], 'LineWidth', 2.5); % 日前计划 bar(t_ID, P_EM_ID, 'FaceColor', [0.8 1 0], 'EdgeColor', 'k', 'LineWidth', 0.5, 'BarWidth', 1); % 日内实际 plot([1 96], [0 0], 'k-', 'LineWidth', 0.5); % 零线 xlabel('Time period (15min)', 'FontSize', 12, 'FontWeight', 'bold'); ylabel('Power output (MW)', 'FontSize', 12, 'FontWeight', 'bold'); title('EM Transaction: Day-ahead vs Intraday', 'FontSize', 13, 'FontWeight', 'bold'); legend('Day-ahead grid', 'Intraday grid', 'Location', 'best', 'FontSize', 11); xlim([1, 96]); % 自动计算Y轴范围 em_min = min([P_EM_ID, repelem(R.P_EM, 4)]); em_max = max([P_EM_ID, repelem(R.P_EM, 4)]); em_range = em_max - em_min; ylim([em_min - 0.2*em_range, em_max + 0.15*em_range]); set(gca, 'FontSize', 11, 'LineWidth', 1); saveas(fig, 'Figures/Fig19_EM_Comparison.png'); end

🎉3参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈4Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1173965.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2026年1月徐州高端品质住宅市场深度分析盘点报告:锚定核心价值,甄选时代藏品 - 2026年企业推荐榜

引言:跨越周期的价值抉择 当前,徐州城市发展格局正经历深刻重塑,“东进南拓”与核心区焕新并举,推动高端住宅市场从单一的“地段论”向“综合价值论”演进。消费者,尤其是具备前瞻视野的城市菁英与实力家庭,其需…

如何使用Spring框架实现AOP?

一、先明确核心概念(快速回顾)在动手前,先理清 Spring AOP 的核心术语,避免后续代码理解混乱:切面(Aspect):封装 “横切逻辑” 的类(比如日志、权限校验、事务&#xff0…

济南的户外广告投放公司哪家便宜? - 工业品牌热点

2026年户外广告行业持续向场景化、数字化、整合化升级,广告主对户外广告的需求已从单一曝光转向降本增效、数据增值、资源整合的综合解决方案。无论是城市核心商圈的大屏投放、跨区域地铁公交的全域覆盖,还是高铁高速…

【顶级EI复现】基于断线解环思想的配电网辐射状拓扑约束建模方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

2026年评价高的胶粘剂,水性胶粘剂,注塑胶粘剂厂家选购参考指南 - 品牌鉴赏师

引言在 2026 年的工业制造与日常生活中,胶粘剂、水性胶粘剂以及注塑胶粘剂的应用愈发广泛,从厨具家电到汽车制造,从电子电气到建筑装饰,这些胶粘剂都发挥着至关重要的作用。然而,面对市场上众多的胶粘剂厂家,如何…

学霸同款8个AI论文写作软件,继续教育学生轻松搞定毕业论文!

学霸同款8个AI论文写作软件,继续教育学生轻松搞定毕业论文! AI工具助力论文写作,轻松应对学术挑战 在当前的继续教育环境中,越来越多的学生面临着毕业论文的压力。无论是撰写初稿、修改内容,还是进行查重和降重&#x…

AI人工智能-强化学习-第十三周(小白)

一、强化学习(RL)和监督学习(SL)的核心区别 监督学习(比如分类, 回归):本质是“老师教学生”——给固定的“输入-输出答案”(比如图片->猫/狗标签、历史数据->股票价格),模型学“输入到答案的映射”,学会就只能做同类预测。 强化学习:是“学生自己摸爬滚打”…

【电压风险评估】基于720个样本与360个样本的Copula及蒙特卡罗推断结果比较研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

强烈安利8个AI论文软件,专科生搞定毕业论文必备!

强烈安利8个AI论文软件,专科生搞定毕业论文必备! AI 工具助力论文写作,专科生也能轻松应对 对于许多专科生来说,毕业论文似乎是一个难以逾越的难关。从选题、查找资料到撰写初稿、反复修改,每一步都充满了挑战。而如今…

高价回收茅台五粮液 同城上门现金结算 京城亚南让老酒变现更安心 - 品牌排行榜单

家里藏着几瓶老茅台、陈年五粮液,想变现却总犯愁?怕遇到路边小商贩乱压价,担心上门鉴定被调包,又嫌自己搬运路途遥远风险高?这些困扰,京城亚南酒业全帮你解决!作为深耕老酒回收行业十年的正规企业,我们专注全国…

2026年石墨烯电锅炉厂家推荐榜:辽宁德威赫电热设备有限公司,储水式电锅炉/电锅炉/电热水锅炉/电采暖电锅炉/蓄热电锅炉/超导体电锅炉/电磁电锅炉/半导体电锅炉/全导体电锅炉厂家精选 - 品牌推荐官

在清洁能源与智能供暖需求持续增长的背景下,电锅炉凭借高效、环保、灵活等特性,成为工业与民用供暖领域的核心设备。据行业数据显示,2025年电锅炉市场规模达280亿元,同比增长15%,其中石墨烯电锅炉、电磁电锅炉等新…

2026年评价高的压敏胶,医用压敏胶,环保压敏胶厂家采购参考指南 - 品牌鉴赏师

引言在 2026 年,压敏胶市场持续蓬勃发展,医用压敏胶和环保压敏胶的需求更是与日俱增。为了给广大采购商提供一份客观、公正、实用的厂家采购参考指南,我们依据国内相关行业协会公开的数据以及权威白皮书内容,经过深…

【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)

👨‍🎓个人主页 💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰&a…

2025年插补Y哪家强?最新口碑排名揭晓,46排刀机/刀塔车床/四轴机/动力刀塔/双主轴双排刀/插补Y/直Y/双主轴双刀塔插补Y品牌选哪家 - 品牌推荐师

在制造业迈向智能化、精密化的浪潮中,车铣复合机床已成为提升加工效率与精度的关键装备。其中,具备插补Y轴功能的机型,因其能够实现复杂轮廓的精密铣削、钻孔、攻牙等工序,在一次装夹中完成多面加工,显著减少工序…

2026 年高速/铁路/城市高架声屏障实力厂家推荐榜:河北上兴路桥工程有限公司,多场景降噪解决方案提供商 - 品牌推荐官

全国超60%的声屏障产能集聚于河北地区,一家企业在京津冀协同发展项目中,为单条铁路提供了长达18公里的声屏障,实测降噪效果达到28分贝。在交通噪声污染日益受到关注的今天,声屏障 已成为高速公路、铁路和城市高架不…

沃尔玛购物卡回收指南,正规平台让你放心变现 - 京回收小程序

沃尔玛购物卡回收指南,正规平台让你放心变现周末整理抽屉时翻出几张闲置的沃尔玛购物卡,面值加起来有2000多元。想起之前朋友因贪便宜找小作坊回收,结果卡密被盗刷损失惨重的经历,我立刻警觉起来——沃尔玛购物卡回…

详细介绍:nginx代理配置详解

详细介绍:nginx代理配置详解pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco"…

边缘智能革命:让YOLO在FPGA上“飞”起来的软硬协同之道

当目标检测算法遇上边缘计算硬件,一场关于速度、精度与功耗的精妙平衡就此展开。你不是在压缩模型,而是在为算法设计专属的硅基座驾。 在一台无人机上进行实时目标检测,需要多少功耗?传统方案使用高性能GPU需要15-30瓦,而通过算法-硬件协同优化设计的FPGA加速系统,可以将…

1.17 模拟赛总结

\(t2\) 复杂度分析错误,后 \(1h\) 因做出两道题松懈。 如果感觉因理解题意超过 \(15min\) 应该最后处理这道题。 题目复杂度的分析不能想当然。 记数题多在纸上推式子。 如果做的特别顺,那别人做的也特别顺,切忌后场…

计及阶梯碳交易成本与多元储能的综合能源系统IES联合低碳优化调度——考虑热电联产机组、燃气机组...

计及阶梯碳交易成本多元储能(电储能、氢储能、气储能、热储能)综合能源系统IES联合低碳优化调度(用MatlabYalmipCplex) 考虑机组和设备:热电联产机组、燃气机组、甲烷反应生成设备 电解槽、氢燃料电池、计及新能源风电…