SpringBoot+Vue 抗疫物资管理系统管理平台源码【适合毕设/课设/学习】Java+MySQL

💡实话实说:

CSDN上做毕设辅导的都是专业技术服务,大家都要生活,这个很正常。我和其他人不同的是,我有自己的项目库存,不需要找别人拿货再加价,所以能给到超低价格。

摘要

在全球范围内,突发公共卫生事件频发,抗疫物资的高效管理成为保障社会稳定的重要环节。传统物资管理方式依赖人工操作,存在信息滞后、分配不均、资源浪费等问题,难以应对紧急需求。尤其在疫情高峰期,物资调度和分配的实时性与准确性直接关系到防控效果。因此,开发一套智能化的抗疫物资管理系统具有重要的现实意义。该系统通过信息化手段优化物资调配流程,提升管理效率,确保物资能够精准、快速地送达需求方。关键词包括:抗疫物资管理、信息化系统、资源调度、疫情防控。

本系统采用前后端分离架构,后端基于SpringBoot框架实现,前端使用Vue.js构建用户界面,数据库采用MySQL存储数据。系统功能涵盖物资入库、出库、库存监控、需求申请、审批流程及数据统计分析等模块。通过角色权限管理,区分管理员、仓库人员和普通用户的权限,确保数据安全性。系统支持多条件查询、数据可视化展示,并具备高并发处理能力,满足大规模物资调度的需求。技术关键词包括:SpringBoot、Vue.js、MySQL、权限管理、数据可视化。

数据表设计

物资基本信息表

物资信息表用于存储抗疫物资的基本属性,包括物资名称、类别、规格等。物资编号是该表的主键,创建时间通过函数自动生成,确保数据的唯一性和时效性。结构如表3-1所示。

字段名数据类型描述
material_idVARCHAR(36)物资编号(主键)
material_nameVARCHAR(50)物资名称
categoryVARCHAR(20)物资类别
specificationVARCHAR(50)规格型号
unitVARCHAR(10)计量单位
create_timeDATETIME创建时间
物资库存记录表

库存记录表用于跟踪物资的实时库存情况,记录每次入库和出库的详细信息。库存流水号为主键,关联物资编号以建立数据一致性。结构如表3-2所示。

字段名数据类型描述
stock_idVARCHAR(36)库存流水号(主键)
material_idVARCHAR(36)关联物资编号
operation_typeVARCHAR(10)操作类型(入库/出库)
quantityINT操作数量
operatorVARCHAR(20)操作人员
operation_timeDATETIME操作时间
物资申请审批表

申请审批表用于管理用户提交的物资需求申请及审批流程。申请单号为主键,记录申请状态和审批意见。结构如表3-3所示。

字段名数据类型描述
application_idVARCHAR(36)申请单号(主键)
applicantVARCHAR(20)申请人
material_idVARCHAR(36)关联物资编号
apply_quantityINT申请数量
statusVARCHAR(10)审批状态(待审批/通过/拒绝)
approve_commentTEXT审批意见
approve_timeDATETIME审批时间

博主介绍:

🎓 学术背景与身份
东南大学计算机科学与技术专业在读研究生,CSDN博客专家,资深Java技术实践者。在校期间深度参与实验室前沿项目研发,现为CSDN特邀作者及掘金优质创作者,致力于推动技术知识的传播与分享。
💡 技术专长领域 专精Java企业级开发生态,深度掌握Spring Boot微服务架构、RESTful
API设计、前后端分离最佳实践等现代Web开发技术栈。在学术项目工程化实现方面拥有丰富经验,擅长将理论知识转化为可落地的技术方案。 📊影响力与成就
🔥 全平台技术粉丝累计30万+ 🏆 成功指导并交付毕业设计项目1000+个 ✍️ 输出高质量原创技术文章200+篇 ⭐
GitHub开源贡献获得社区认可5K+星标

系统介绍:

直接拿走,意外获得200多套代码,需要的滴我SpringBoot+Vue 抗疫物资管理系统管理平台源码【适合毕设/课设/学习】Java+MySQL(可提供说明文档(通过AIGC

功能参考截图:





系统架构参考:

视频演示:

可以直接联系我查看详细视频,个性签名!

项目案例参考:



最后再唠叨一句:

可以直接联系我查看详细视频,个性签名!
遇见即是缘,欢迎交流,你别地能找到的源码我都有!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1170850.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全球成膜助剂供成膜助剂源头厂家:江西成膜助剂生产厂、浙江成膜助剂生产厂名单 - 品牌2026

成膜助剂作为涂料行业的核心配套原料,能有效提升涂膜的成型稳定性、耐候性与兼容性,广泛应用于建筑、工业等多个领域。随着环保政策日趋严格与市场需求升级,全球成膜助剂行业向绿色化、高性能化转型,源头膜助剂生产…

零样本图像分割新体验|SAM3大模型镜像助力万物分割落地

零样本图像分割新体验|SAM3大模型镜像助力万物分割落地 1. 技术背景与核心价值 近年来,计算机视觉领域正经历一场由“基础模型”驱动的范式变革。传统图像分割任务高度依赖大量标注数据和特定场景训练,开发成本高、泛化能力弱。Meta发布的 …

成膜助剂哪家质量好?2026年销量比较好的成膜助剂厂家盘点 - 品牌2026

在涂料、胶粘剂等精细化工领域,成膜助剂是保障产品成型效果与使用性能的核心辅料。2026年,市场对成膜助剂的质量稳定性、环保合规性要求持续提升,销量表现突出且符合欧盟标准的供应商成为行业关注焦点。本文将盘点多…

ESP-IDF初始化报错的典型工业现场应对策略

ESP-IDF初始化报错?工业级现场的实战排障手册你有没有在深夜调试产线固件时,突然被一条the path for esp-idf is not valid搞得措手不及?或者CI流水线莫名其妙失败,提示/tools/idf.py not found,而本地明明一切正常&am…

DeepSeek-R1降本部署实战:无需GPU,CPU运行节省90%成本

DeepSeek-R1降本部署实战:无需GPU,CPU运行节省90%成本 1. 引言 随着大模型在推理、代码生成和数学逻辑等任务中的广泛应用,企业与开发者对高性能模型的需求日益增长。然而,主流大模型通常依赖高成本的GPU进行推理服务&#xff0…

Qwen3-VL-2B模型调用实战:Python接口接入详细步骤

Qwen3-VL-2B模型调用实战:Python接口接入详细步骤 1. 引言 1.1 业务场景描述 随着多模态人工智能技术的快速发展,视觉语言模型(Vision-Language Model, VLM)在图像理解、图文问答和OCR识别等场景中展现出巨大潜力。然而&#x…

DeepSeek-OCR优化指南:多线程处理配置参数

DeepSeek-OCR优化指南:多线程处理配置参数 1. 背景与应用场景 随着企业数字化进程的加速,大量非结构化图像文档需要高效转化为可编辑、可检索的文本数据。DeepSeek-OCR-WEBUI 作为 DeepSeek 开源 OCR 大模型的可视化推理前端,为开发者和业务…

一键启动Sambert多情感语音合成:中文TTS零配置部署

一键启动Sambert多情感语音合成:中文TTS零配置部署 1. 引言:工业级中文TTS的开箱即用时代 在智能客服、有声阅读、虚拟主播等应用场景中,高质量、多情感、多说话人的中文语音合成(Text-to-Speech, TTS)已成为提升用户…

GPEN日志调试技巧:查看后台输出定位异常问题方法

GPEN日志调试技巧:查看后台输出定位异常问题方法 1. 引言 1.1 技术背景与问题提出 GPEN(Generative Prior Enhancement Network)作为一种基于生成先验的图像肖像增强模型,广泛应用于老照片修复、低质量人像优化等场景。其WebUI…

惊艳!DeepSeek-R1打造的数学解题机器人效果展示

惊艳!DeepSeek-R1打造的数学解题机器人效果展示 1. 引言:轻量级模型如何实现高精度数学推理? 在大语言模型飞速发展的今天,越来越多的应用场景开始向移动端和边缘设备延伸。然而,传统的大模型往往面临参数量大、内存…

开发者快速上手:Qwen1.5-0.5B-Chat一键镜像部署推荐教程

开发者快速上手:Qwen1.5-0.5B-Chat一键镜像部署推荐教程 1. 引言 1.1 学习目标 本文旨在为开发者提供一份完整、可执行、零基础友好的 Qwen1.5-0.5B-Chat 模型本地化部署指南。通过本教程,您将能够在短时间内完成从环境配置到 Web 界面交互的全流程操…

开发者快速上手:Qwen1.5-0.5B-Chat一键镜像部署推荐教程

开发者快速上手:Qwen1.5-0.5B-Chat一键镜像部署推荐教程 1. 引言 1.1 学习目标 本文旨在为开发者提供一份完整、可执行、零基础友好的 Qwen1.5-0.5B-Chat 模型本地化部署指南。通过本教程,您将能够在短时间内完成从环境配置到 Web 界面交互的全流程操…

Qwen3-Embedding-4B镜像更新:SGlang最新集成说明

Qwen3-Embedding-4B镜像更新:SGlang最新集成说明 1. 背景与技术演进 随着大模型在检索增强生成(RAG)、语义搜索、多语言理解等场景中的广泛应用,高质量文本嵌入模型的重要性日益凸显。传统的通用语言模型虽具备一定语义编码能力…

从部署到调用:Qwen3-Embedding-0.6B完整实践路径

从部署到调用:Qwen3-Embedding-0.6B完整实践路径 1. 引言:为什么选择 Qwen3-Embedding-0.6B? 在当前大模型驱动的智能应用中,文本嵌入(Text Embedding)作为信息检索、语义匹配和知识库构建的核心技术&…

Qwen3-VL网页UI访问慢?网络延迟优化部署实战教程

Qwen3-VL网页UI访问慢?网络延迟优化部署实战教程 1. 引言:Qwen3-VL-2B-Instruct 的能力与挑战 1.1 模型背景与核心价值 Qwen3-VL-2B-Instruct 是阿里云开源的视觉-语言大模型,属于 Qwen 系列中迄今为止最强大的多模态版本。该模型在文本理…

NotaGen部署案例:音乐教育AI助手方案

NotaGen部署案例:音乐教育AI助手方案 1. 引言 1.1 项目背景与业务需求 在现代音乐教育中,教师和学生常常面临创作资源匮乏、风格理解不深、练习素材有限等问题。尤其是在古典音乐教学领域,如何快速生成符合特定作曲家风格的乐谱&#xff0…

Swift-All自动化:CI/CD流水线集成模型训练与发布

Swift-All自动化:CI/CD流水线集成模型训练与发布 1. 引言 1.1 业务场景描述 在当前大模型快速发展的背景下,AI工程团队面临的核心挑战之一是如何高效、稳定地完成从模型选择、训练、微调到部署的全链路流程。传统的手动操作方式不仅耗时耗力&#xff…

FRCRN语音降噪应用场景:电话录音降噪实战案例

FRCRN语音降噪应用场景:电话录音降噪实战案例 1. 引言 在现代语音通信和语音识别系统中,背景噪声是影响语音质量和识别准确率的关键因素。尤其是在电话录音场景中,常见的环境噪声(如交通声、空调声、人声干扰)会显著…

# 大模型部署算力账本:手把手教你算清GPU显存这笔账

本系列构建了从大模型理解、微调优化、资源计算到实际部署的完整知识体系,辅以实用工具推荐,旨在帮助开发者系统掌握大模型落地核心技能,从理论到实践全面赋能。大家好,我是专注AI技术落地的博主。今天我们来聊聊一…

YOLOv8性能测试:长期运行稳定性

YOLOv8性能测试:长期运行稳定性 1. 引言 1.1 工业级目标检测的稳定性挑战 在智能制造、安防监控、智慧零售等实际应用场景中,目标检测系统往往需要724小时不间断运行。尽管YOLO系列模型以“实时性”著称,但其在长时间高负载下的稳定性表现…