收藏!一文读懂Agent思维链技术:从Claude到Gemini,为什么说这是Agent性能提升的关键?

文章介绍了Agent模型中的思维链技术,不同模型虽有不同称呼(如Claude的Interleaved Thinking、Gemini的Thought Signature),但核心都是将思考内容带入上下文,以提升多轮推理性能。相比Chatbot,Agent需复杂多步交互,保留思考内容能减少推理偏移,提高稳定性。原生支持优于工程拼接,部分模型还添加签名校验或加密处理。该技术已成为Agent多步骤推理的必需品,但模型稳定性仍待提升。


关于 Agent 模型的思维链,之前被几个高大上的词绕晕了,claude 提出 Interleaved Thinking(交错思维链),MiniMax M2 用了同样的概念,K2 叫 Thinking-in-Tools,Deepseek V3.2 写的是 Thinking in Tool-Use,gemini 则是 Thought Signature(思考签名)。了解了下,概念上比较简单,基本是一个东西,就是定义了模型思考的内容怎样在 Agent 长上下文里传递。

是什么

在25年年初 DeepSeek 的轰炸下,思考模型大家都很熟悉了,在 Chatbot 单轮对话中,模型会先输出思考的内容,再输出正文。再早的 GPT-o1 也一样,只不过 o1 不把完整的思考内容输出。

在 Chatbot 进行多轮对话时,每一次思考的内容是不会再带入上下文的。每次到下一轮时,思考的内容都会被丢弃,只有用户 prompt 和模型回答的正式内容会加到上下文。因为在普通对话的场景下没必要,更倾向于单轮对话解决问题,长上下文会干扰模型,也会增加 token 消耗。

这些思考模型用到 Agent 上,就是下图这样,每次模型输出工具调用,同时都会输出思考内容,思考应该调什么工具,为什么调,但下次这个思考内容会被丢弃,不会带入上下文:

Agent 的 loop 是:用户输入 → 模型输出工具调用 → 调用工具得出结果 → 模型输入下一步工具调用 → 调用工具得出结果 → …. 直到任务完成或需要用户新的输入。

这不利于模型进行多轮长链路的推理,于是 claude 4 sonnet 提出把 thinking 内容带入上下文这个事内化到模型,以提升 Agent 性能,上下文的组织变成了这样:

就这样一个事,称为 Interleaved Thinking,其他的叫法也都是一样的原理。

为什么要带 thinking

面向 Chatbot 的模型,倾向于一次性解决问题,尽量在一次 thinking 后一次输出解决问题。

Agent 相反,倾向于多步不断跟环境(tool和user)交互解决问题。

Agent 解决一个复杂问题可能要长达几十轮工具调用,如果模型对每次调用工具的思考内容都抛弃,只留下结果,模型每次都要重新思考每一轮为什么要调这个工具,接下来应该调什么工具。这里每一次的重新思考如果跟原来的思考推理有偏移,最终的结果就会有很大的出入和不稳定,这种偏移在多轮下几乎一定会发生。

如果每一轮调用的思考内容都放回上下文里,每次为什么调工具的推理逻辑上下文都有,思维链完整,就大大减少了模型对整个规划的理解难度和对下一步的调用计划的偏差。

有没有带 thinking 内容,对效果有多大差别?MiniMax-M2提供了他们的数据:

在像 Tau 这种机票预订和电商零售场景的任务 benchmark 提升非常明显,这类任务我理解需要操作的步数更多(比如搜索机票→筛选过滤→看详情→下单→支付),模型在每一步对齐前面的思路很重要,同一个工具调用可能的理由随机性更大,每一步的思考逻辑带上后更稳定。

工程也能做?

这么一个简单的事,不用模型支持,直接工程上拼一下给模型是不是也一样?比如手动把思考内容包在一个标签()里,伪装成 User Message 或 ToolResult 的一部分放在里面,也能达到保留思考的效果。

很多人应该这样做过,但跟模型原生支持还是有较大差别。

工程手动拼接,模型只会认为这部分仍是用户输入,而且模型的训练数据和流程没有这种类型的用户输入和拼接,效果只靠模型通用智能随意发挥。

模型原生支持,训练时就可以针对这样规范的上下文训练,有标注大量的包含思考过程的trajectory轨迹数据训练,响应的稳定性必然会提升,这也是 Agent 模型的重点优化点之一。

签名

上述工具调用的 thinking 内容带到下一轮上下文,不同的模型做了不同额外的处理,主要是加了不同程度的签名,有两种:

thinking 内容原文,带签名校验

claude 和 gemini 都为 thinking 的内容加了签名校验,带到下一轮时,模型会前置判断思考内容有没有被篡改。

为什么要防 thinking 内容被篡改?毕竟 prompt 也可以随便改,同样是上下文的 thinking 内容改下也没什么。

主要应该是篡改了模型的 thinking 内容会打乱模型的思路,让效果变差,这也是需要避免的。

另外模型在训练和对齐时,已经默认 thinking 是模型自己的输出,不是用户随意的输入,这是两个不同类型的数据,如果实际使用时变成跟Prompt一样可随意篡改,可能有未知的安全问题。

不过国内模型目前没看到有加这个签名校验的。

thinking 内容加密

claude 在一些情况下不会输出自然语言的 thinking 内容,而是包在redacted_thinking里,是一串加密后的数据。

而 gemini 2.5/3.0 的 Agent 思维链没有明文的 thinking 字段,而是 thought_signature,也是一串加密后的数据。

用这种加密的非自然语言数据,一个好处是,它可以是对模型内部更友好、压缩率更大的数据表述方式,也可以在一些涉及安审的场景下内容不泄露给用户。

更重要的还是防泄漏,这就跟最开始 GPT o1 不输出所有思考内容一样,主要是为了不暴露思考过程,模型发布后不会太轻易被蒸馏。

最后

目前 claude 4 sonnet、gemini 3 在 Agent 工具调用的场景下,都强制要求带工具调用的思考内容和签名,这个链路正常是能很大程度提升整体的推理执行效果,是 Agent 多步骤推理的必需品。

但目前 Agent 模型的稳定性还是个问题,例如在某些场景下,业务逻辑明确需要下一步应该调工具 A,但模型思考后可能就是会概率性的调工具B,在以前是可以直接 hack 替换调工具调用,或手动插入其他工具调用,没有副作用。

但在思维链这套机制下比较麻烦,因为没法替模型输出这个工具调用的思考内容,一旦打破这个链,对后续推理的效果和稳定性都会有影响。

可能模型厂商后续可以出个允许上层纠错的机制,例如可以在某个实际告诉函数工具选择错误,重新思考,原生支持,弥补模型难以保障稳定的不足。

AI时代,未来的就业机会在哪里?

答案就藏在大模型的浪潮里。从ChatGPT、DeepSeek等日常工具,到自然语言处理、计算机视觉、多模态等核心领域,技术普惠化、应用垂直化与生态开源化正催生Prompt工程师、自然语言处理、计算机视觉工程师、大模型算法工程师、AI应用产品经理等AI岗位。

掌握大模型技能,就是把握高薪未来。

那么,普通人如何抓住大模型风口?

AI技术的普及对个人能力提出了新的要求,在AI时代,持续学习和适应新技术变得尤为重要。无论是企业还是个人,都需要不断更新知识体系,提升与AI协作的能力,以适应不断变化的工作环境。

因此,这里给大家整理了一份《2026最新大模型全套学习资源》,包括2026最新大模型学习路线、大模型书籍、视频教程、项目实战、最新行业报告、面试题、AI产品经理入门到精通等,带你从零基础入门到精通,快速掌握大模型技术!

由于篇幅有限,有需要的小伙伴可以扫码获取!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

4. 大模型项目实战

学以致用,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

5. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

为什么大家都在学AI大模型?

随着AI技术的发展,企业对人才的需求从“单一技术”转向 “AI+行业”双背景。企业对人才的需求从“单一技术”转向 “AI+行业”双背景。金融+AI、制造+AI、医疗+AI等跨界岗位薪资涨幅达30%-50%。

同时很多人面临优化裁员,近期科技巨头英特尔裁员2万人,传统岗位不断缩减,因此转行AI势在必行!

这些资料有用吗?

这份资料由我们和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


大模型全套学习资料已整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1164874.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka C++ 和 java端计算分区ID不一致排查

生产端使用C,将std:string key 传入,parititon设为-1,表示让kafka自动计算分区id java端拿到反序列化后的key string,通过murmur2 算法计算出的分区id和kafka分配的分区id不一致根本原因:C的kafka使用CRC32 计算hash&a…

为什么你的大模型总在胡说八道?RAG技术彻底解决幻觉问题(必学收藏)

RAG(检索增强生成)是为大模型配备"外部知识库"的技术,有效解决大模型幻觉、知识滞后和缺乏私有知识三大问题。其工作流程包括数据准备(清洗、向量化、存储)、检索(语义匹配)、增强&am…

基于视觉大模型的实时监控系统技术实现解析

若你正关注计算机视觉技术在货架状态感知场景的落地,寻求低成本、高复用性的实时监控技术方案,那么这款AI视觉系统的技术实现逻辑值得深入探讨。其核心围绕视觉感知与智能决策的全流程构建,展现了计算机视觉技术在静态场景监控中的实践价值。…

【技术干货收藏】智能体规划模式:从“被动执行“到“主动运筹“,AI能力质的飞跃!

文章介绍了智能体的规划模式,这是一种让AI从被动执行升级为主动运筹的核心能力。规划模式使智能体能自主拆解复杂任务、制定行动路径、应对变化,形成"目标拆解-计划生成-执行调整-达成目标"的闭环。文章详细阐述了其概念、价值、流程、应用场景…

货车手机远程启动一键启动无钥匙进入哪个功能更实用

在货车的智能功能中,‌手机远程启动‌和‌一键启动‌的实用性更高,而‌无钥匙进入‌则更侧重于便利性。具体来说:1. ‌移动管家货车一键启动手机远程启动‌系统 ‌核心优势‌:通过手机APP远程启动车辆,提前预热发动机或…

SIEMENS西门子杯,西门子六部十层电梯程序,跑分可以西门子-2021-初赛电梯最终版

SIEMENS西门子杯,西门子六部十层电梯程序,跑分可以西门子-2021-初赛电梯最终版深夜两点半的实验室里,显示器蓝光映着六部电梯的仿真界面,参数监控窗口的数据流像瀑布一样倾泻而下。这个被我们戏称为"电梯侠"的项目&…

震惊!“前端已死“刷屏,真相是...程序员必看:如何从写代码到写思路(必收藏)

文章讨论了Gemini 3发布引发的"前端已死"争议,认为这是所有程序员面临的AI时代挑战。我们正进入"自然语言编程"时代,程序员将从写代码转变为写提示词,未来可能出现"提示工程架构师"。文章分享10条提示词工程心…

2026必备!9个AI论文写作软件,自考学生轻松搞定毕业论文!

2026必备!9个AI论文写作软件,自考学生轻松搞定毕业论文! AI 工具让论文写作不再难 随着人工智能技术的不断进步,越来越多的自考学生开始借助 AI 工具来提升论文写作效率。尤其是在当前 AIGC(人工智能生成内容&#xf…

2026程序员生存指南:当“斩杀线“逼近,你的代码正在被AI替代,收藏这篇救命攻略

文章借用游戏"斩杀线"概念,分析了程序员在AI时代的职业危机,提出"生存值核心不可替代性/(薪资期望年龄折损)“公式。指出通用技术能力正在被AI稀释,程序员需从"写代码者"转型为"产品工程师”,培养业…

【必藏】200行代码从零实现LLM:破解大模型黑盒,告别只会调用API的日子

本文详细介绍了如何从零构建一个小型LLM模型,通过逐步实现Tokenizer、Embedding、Attention机制和Transformer结构等核心组件,帮助开发者理解大模型底层原理。作者用朴素的代码实现了类似GPT-2的QDogBaby模型,包括多头注意力、前馈网络、残差…

CUDA统一内存(UVM)完整演进历程-软件篇

CUDA统一内存(UVM)完整演进历程 一、CUDA 4.0前:显式内存管理时代(2007-2012) 编程范式:完全手动管理 // 向量加法示例 - 完全显式 __global__ void vectorAdd(float* A, float* B, float* C, int n) {int …

微信小程序版「死了么APP」,它来了

独居的你,如果突然失联了怎么办? 最近,有一款 iOS APP 在社交媒体上突然火了,名字听起来有点“晦气”,叫**「死了么」**。 虽然名字硬核,但它的功能却戳中了无数独居年轻人的软肋:“如果我长时间…

从“死流程“到“活资产“:五步构建AI原生应用新架构【干货收藏】

文章对比了AI应用落地中的两种架构:传统可视化工作流与AgentSkills架构。提出五步构建框架(拆分、编排、存储、分摊、迭代),分析Agent架构在稳定性、成本和门槛方面的挑战及解决方案。核心观点是AgentSkills更具灵活性、可移植性和自我进化能力&#xff…

收藏必看!大模型推理新范式:一次思考两次回答,大幅提升思维链质量与推理效率

本文介绍了一种创新的"answer→think→answer"推理范式,模型先直接回答问题,高置信度则输出答案,否则再进行推理。这种方法有效减少思维链长度,提高回答精度,通过双答案奖励机制和早停策略实现。实验证明&am…

【必藏】AI Agent实战:打造能自主决策的“数字员工“,架构师必看!

文章探讨了AI Agent作为新一代应用范式的兴起,标志着软件从"功能实现"向"能力封装"的范式升级。AI Agent通过"感知-决策-执行-反馈"的自主闭环,将特定岗位能力系统性封装为可复用的数字化资产。文章详细拆解了AI Agent的核…

PoE 延长器:突破 PoE 距离限制,优化网络灵活部署方案

在智慧办公、安防监控、零售连锁乃至工业自动化等领域,PoE 技术巧妙地将供电与数据传输功能集成于一根以太网电缆之中,极大地简化了布线工作,为各类设备的部署与运行带来了极大的便利。然而,在实际的网络部署过程中,许…

**软件配置项(SCI)的组成** 软件配置项(Software Configuration Item, SCI)是软件配置管理中的基本单位

软件配置项(SCI)的组成 软件配置项(Software Configuration Item, SCI)是软件配置管理中的基本单位,主要包括以下几类: 文档类:如需求规格说明书、设计说明书、用户手册、操作手册、维护手册、…

【必读收藏】工具使用模式:给智能体装上“超能力“,让它真正走进现实!

文章介绍了智能体的工具使用(函数调用)模式,解释了如何让智能体通过调用外部API、数据库、代码等突破语言模型局限,实现与现实世界的交互。文章详细拆解了工具使用模式的概念、价值、六步实现流程、四个关键要点及实际案例&#x…

必藏!让Agent真正“能干活“的Agent Skills全解析,从入门到实战

文章介绍了Agent Skills,一套让AI Agent专业"做事"的标准化技能说明书。它不同于一次性使用的Prompt和解决"能做什么"的Tool/MCP,而是提供长期、稳定、可复用的"做事方法论"。文章详细讲解了Agent Skills的结构、配置方法…

Arcgis导出数据时出错,空间参考z值不匹配(已解决)

问题描述:把shp数据导出到想要的数据库,报错显示“导出数据时出错。空间参考z值不匹配。Excepting object to be local”这个问题是我很久以前就遇到过的问题,并已经形成了熟练的解决方案,这里不再分析原理(可能有的地…