淘宝MD5爬虫

代码概述

这是一个基于Python的淘宝商品数据爬虫,通过模拟浏览器请求淘宝推荐API,获取商品信息并保存为CSV格式。代码采用了面向对象的设计,核心功能封装在Spider类中。
核心方法详解

1. 初始化方法 __init__

def __init__(self): self.start_url = "https://h5api.m.taobao.com/h5/mtop.relationrecommend.wirelessrecommend.recommend/2.0/" self.headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0...)", "Cookie": "thw=cn; cna=6mekIerwY3IC..." # 简化显示 }

功能:设置API接口地址和请求头信息,包含模拟真实浏览器的User-Agent和身份验证所需的Cookie。

2. 签名生成方法 parse_get_sign

def parse_get_sign(self, t, data): token = re.search(r'_m_h5_tk=([a-f0-9]+)_', self.headers["Cookie"]).group(1) sign_str = f"{token}&{t}&{app_key}&{data}" return hashlib.md5(sign_str.encode('utf-8')).hexdigest()

功能:淘宝API的反爬机制要求每个请求必须携带数字签名。该方法从Cookie提取令牌,结合时间戳和应用密钥,通过MD5算法生成验证签名。

3. 数据清洗与保存方法 save_to_csv

def save_to_csv(self, items_list): with open('淘宝商品数据.csv', 'w', encoding='utf-8-sig') as f: writer = csv.writer(f) writer.writerow(['标题', '价格', '销量', '店铺名', '发货地', '是否广告', '商品链接', '图片链接']) for item in items_list: clean_title = re.sub(r'<[^>]+>', '', item.get('title', '')) # 去除HTML标签 # ... 其他字段处理 writer.writerow([clean_title, price, sales, shop, location, is_ad, link, img])

功能:
数据清洗:去除标题中的HTML标签、补全商品链接前缀
字段提取:价格、销量、店铺信息、地理位置等
广告标识:根据isP4p字段标记推广商品
文件保存:使用utf-8-sig编码确保Excel兼容性

4. 主解析方法 parse_start_url

def parse_start_url(self): t = str(int(time.time() * 1000)) # 生成时间戳 data_dict = {"appId":"34385", "params":"{...}"} # 请求参数 data = json.dumps(data_dict, separators=(',', ':')) sign = self.parse_get_sign(t, data) # 生成签名 response = requests.get(self.start_url, headers=self.headers, params=params) json_str = content[content.find('(')+1 : content.rfind(')')] # 提取JSONP响应 items_array = json.loads(json_str).get('data', {}).get('itemsArray', []) self.save_to_csv(items_array) # 保存数据

功能:协调整个爬取流程,包括参数构建、签名验证、API请求、响应解析和数据保存。

关键技术点

1.反爬应对策略
2.签名验证:模拟淘宝官方的签名算法绕过基础验证
3.请求头模拟:完整复制浏览器请求头降低被识别风险
4.Cookie维持:保持会话状态获取有效数据
5.数据清洗流程

代码实现了完整的数据处理管道:
原始数据解析:从JSONP响应中提取有效JSON
HTML净化:正则表达式去除标签保留纯文本
链接标准化:自动补全协议前缀(//→ https://)
类型转换:布尔值转中文标识(true/false → 是/否)
文件输出优化
采用utf-8-sig编码解决Excel中文乱码问题
使用CSV格式保证数据可移植性
异常处理确保单条数据错误不影响整体流程

这种结构清晰的爬虫框架可以轻松扩展至其他电商平台,只需调整API接口和解析逻辑即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1161121.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何降低Super Resolution运维成本?自动化脚本省50%人力

如何降低Super Resolution运维成本&#xff1f;自动化脚本省50%人力 1. 背景与挑战&#xff1a;AI超清画质增强的运维瓶颈 随着图像处理需求在内容平台、数字修复和安防领域的广泛应用&#xff0c;基于深度学习的超分辨率技术&#xff08;Super Resolution, SR&#xff09; 正…

从零开始:使用OpenCV DNN实现人脸年龄性别识别

从零开始&#xff1a;使用OpenCV DNN实现人脸年龄性别识别 1. 引言 1.1 AI 读脸术 - 年龄与性别识别 在计算机视觉领域&#xff0c;人脸属性分析正成为智能监控、用户画像、人机交互等场景中的关键技术。其中&#xff0c;年龄与性别识别作为基础能力&#xff0c;能够在不依赖…

从零实现LED阵列汉字显示实验(STM32平台)

从零点亮汉字&#xff1a;在STM32上实现1616 LED点阵的完整实战你有没有试过&#xff0c;只用几行代码和一块小屏幕&#xff0c;就让“你好世界”四个字在眼前跳动&#xff1f;这听起来像魔法&#xff0c;但在嵌入式的世界里&#xff0c;它不过是一次对GPIO、定时器与字模的精准…

零基础玩转verl:无需高端显卡也能体验强化学习

零基础玩转verl&#xff1a;无需高端显卡也能体验强化学习 1. 引言 随着大语言模型&#xff08;LLM&#xff09;的快速发展&#xff0c;后训练阶段的优化技术逐渐成为提升模型性能的关键环节。其中&#xff0c;基于强化学习&#xff08;Reinforcement Learning, RL&#xff0…

三菱FX3U plc梯形图中m8411和m8120 两个继电器的区别

在三菱PLC&#xff08;特别是FX3U/FX3UC系列&#xff09;的梯形图编程中&#xff0c;M8411 和 M8120 都属于与通信功能相关的特殊辅助继电器&#xff0c;但它们的作用完全不同。根据你的提问&#xff0c;我为你详细解析这两个软元件在梯形图中的具体用法和区别&#xff1a;1. …

Proteus示波器查看I2C总线时序的完整示例

如何用Proteus示波器“看懂”I2C通信全过程&#xff1a;从代码到信号的完整调试实战你有没有遇到过这种情况&#xff1a;单片机明明写了I2C读写函数&#xff0c;编译通过、下载运行也没报错&#xff0c;可传感器就是没反应&#xff1f;串口打印显示“ACK failed”&#xff0c;但…

AI 印象派艺术工坊医疗可视化尝试:CT图艺术风格迁移案例

AI 印象派艺术工坊医疗可视化尝试&#xff1a;CT图艺术风格迁移案例 1. 引言 1.1 技术背景与跨界探索动机 在人工智能与计算机视觉快速发展的今天&#xff0c;图像处理技术已不再局限于传统的增强、分割或分类任务。随着非真实感渲染&#xff08;Non-Photorealistic Renderi…

三菱plc有哪些编程指令?

三菱PLC&#xff08;主要以主流FX系列和Q/L系列为例&#xff09;的编程指令非常丰富&#xff0c;涵盖基本逻辑控制、数据处理、运算、流程控制、通信、定位等多个方面。以下按功能分类对一些常用和重要的指令进行详细介绍&#xff08;使用中文指令名&#xff0c;括号内为常见助…

jScope时序分析功能深度剖析

用jScope“看见”代码的呼吸&#xff1a;嵌入式时序调试的艺术你有没有过这样的经历&#xff1f;电机控制程序明明逻辑清晰&#xff0c;参数也调得八九不离十&#xff0c;可一上电就抖得像抽风&#xff1b;电源系统在轻载下稳如泰山&#xff0c;重载一来输出电压却开始“跳舞”…

眨眼频率太机械?Sonic eye_blink随机化参数优化

眨眼频率太机械&#xff1f;Sonic eye_blink随机化参数优化 1. 引言&#xff1a;语音图片合成数字人视频工作流 随着AIGC技术的快速发展&#xff0c;基于音频与静态图像生成动态数字人视频的工作流正逐步成为内容创作的核心工具之一。该流程通过上传 MP3 或 WAV 格式的音频文…

GLM-4.6V-Flash-WEB在线教育:学生手写笔记智能批改工具

GLM-4.6V-Flash-WEB在线教育&#xff1a;学生手写笔记智能批改工具 1. 技术背景与应用场景 随着在线教育的快速发展&#xff0c;学生在远程学习过程中产生的大量手写笔记、作业和答题卡亟需高效、精准的自动化批改方案。传统OCR技术在处理复杂排版、公式符号、连笔字迹时表现…

项目应用:车载ECU中CAN NM集成实战经验分享

车载ECU中的CAN NM集成实战&#xff1a;从原理到落地的全链路解析你有没有遇到过这样的场景&#xff1f;一辆停放了两周的新能源车&#xff0c;车主按下遥控钥匙——没反应。检查电池电压&#xff0c;发现已经低于启动阈值。不是蓄电池老化&#xff0c;也不是漏电严重&#xff…

通义千问3-14B硬件选型:从消费级到专业级GPU对比

通义千问3-14B硬件选型&#xff1a;从消费级到专业级GPU对比 1. 引言 1.1 业务场景描述 随着大模型在企业服务、智能客服、内容生成等领域的广泛应用&#xff0c;如何在有限预算下实现高性能推理成为工程落地的关键挑战。通义千问3-14B&#xff08;Qwen3-14B&#xff09;作为…

基于元器件选型的PCB布局协同设计:项目应用

一次成功的PCB设计&#xff0c;从元器件选型开始&#xff1a;以音频系统为例的协同工程实践你有没有遇到过这样的场景&#xff1f;原理图画得完美无缺&#xff0c;代码跑得稳稳当当&#xff0c;结果第一版PCB打回来一通电——噪声大、信号毛刺频发、录音底噪像风吹麦浪……拆了…

YOLO11支持哪些任务类型?全面介绍

YOLO11支持哪些任务类型&#xff1f;全面介绍 YOLO11作为Ultralytics公司推出的最新一代目标检测框架&#xff0c;不仅在检测速度与精度上实现了新的突破&#xff0c;更关键的是其架构设计高度模块化&#xff0c;原生支持多种计算机视觉任务。借助统一的API接口&#xff0c;开…

Qwen3-4B-Instruct-2507部署卡顿?vLLM优化实战提升GPU利用率300%

Qwen3-4B-Instruct-2507部署卡顿&#xff1f;vLLM优化实战提升GPU利用率300% 1. 背景与问题定位 在大模型推理服务部署过程中&#xff0c;Qwen3-4B-Instruct-2507作为一款具备强通用能力的40亿参数因果语言模型&#xff0c;广泛应用于指令遵循、逻辑推理、多语言理解及长上下…

零基础搭建ASR系统:用Paraformer镜像实现中文语音转文字

零基础搭建ASR系统&#xff1a;用Paraformer镜像实现中文语音转文字 1. 引言 1.1 语音识别的现实需求 在智能硬件、会议记录、客服系统和内容创作等场景中&#xff0c;将语音高效准确地转化为文字已成为一项刚需。传统的语音识别方案往往依赖云端服务&#xff0c;存在隐私泄…

魔果云课封神!网课老师必备神器✨小白速冲

家人们谁懂啊&#xff01;&#x1f62d; 找网课软件找得头秃&#xff0c;终于挖到魔果云课这个宝藏了&#xff01;操作简单到离谱&#xff0c;小白老师直接上手无压力&#xff0c;直播、录播、作业批改全搞定&#xff0c;再也不用来回切换软件&#xff0c;教学效率直接拉满&…

Fun-ASR错误码解析大全:常见问题定位与修复步骤

Fun-ASR错误码解析大全&#xff1a;常见问题定位与修复步骤 1. 引言 随着语音识别技术在智能客服、会议记录、教育辅助等场景的广泛应用&#xff0c;Fun-ASR作为钉钉与通义联合推出的语音识别大模型系统&#xff0c;凭借其高精度、多语言支持和灵活部署能力&#xff0c;正在成…

如何优化Qwen3-VL-2B加载速度?模型初始化步骤详解

如何优化Qwen3-VL-2B加载速度&#xff1f;模型初始化步骤详解 1. 背景与挑战&#xff1a;多模态模型的启动瓶颈 随着多模态大模型在图文理解、视觉问答等场景中的广泛应用&#xff0c;Qwen3-VL-2B-Instruct 作为通义千问系列中轻量级但功能强大的视觉语言模型&#xff0c;受到…