【MIMO通信】大规模多元MIMO系统中的低复杂混合预编码【含Matlab源码 14938期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式

🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(高阶版)
②付费专栏Matlab信号处理(进阶版)
③付费专栏Matlab信号处理(初级版)

⛳️关注CSDN Matlab领域,更多资源等你来!!

⛄一、大规模多元MIMO系统中的低复杂混合预编码

1 混合预编码的基本原理
混合预编码结合了数字预编码和模拟预编码的优点,通过减少射频链路的数量来降低硬件复杂度和功耗。数字预编码处理基带信号,模拟预编码通过模拟器件(如移相器)实现波束成形。

2 低复杂度设计方法
基于正交匹配追踪(OMP)的算法
OMP算法通过迭代选择最优的模拟预编码向量来逼近全数字预编码的性能。其核心思想是在每次迭代中选择与残差信号最相关的原子(预编码向量),逐步减小残差。

基于矩阵分解的方法
将全数字预编码矩阵分解为模拟预编码矩阵和数字预编码矩阵的乘积。常用的分解方法包括奇异值分解(SVD)和非负矩阵分解(NMF),以最小化分解误差。

基于深度学习的方法
利用神经网络学习信道状态信息(CSI)与最优预编码矩阵之间的映射关系。深度学习的优势在于能够通过离线训练降低在线计算的复杂度。

3 性能优化技术
码本设计优化
设计稀疏码本或层次化码本,减少搜索空间。例如,使用Grassmannian流形上的码本可以提高波束成形的精度。

信道估计简化
利用压缩感知技术或子空间跟踪方法减少信道估计的开销。低秩信道模型可以进一步降低估计复杂度。

硬件约束下的优化
考虑移相器的量化误差和射频链路的非线性特性,优化预编码矩阵以适配硬件限制。例如,使用迭代算法调整移相器相位。

4 实现示例
以下是一个简化的OMP算法伪代码:

输入:信道矩阵H,目标预编码矩阵F_opt 初始化:残差R = F_opt,模拟预编码矩阵F_RF = [] for k = 1 to N_RF 找到与R最相关的码本向量f_k F_RF = [F_RF, f_k] 计算数字预编码F_BB = (F_RF^H F_RF)^{-1} F_RF^H F_opt 更新残差R = F_opt - F_RF F_BB end 输出:F_RF, F_BB

5 性能权衡
低复杂度混合预编码需要在频谱效率、硬件复杂度和计算开销之间取得平衡。通过合理选择算法和参数,可以在保证性能的同时显著降低系统复杂度。

⛄二、部分源代码和运行步骤

1 部分代码

2 运行步骤
(1)直接运行main即可一键出图。

⛄三、运行结果

⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1]文涛;周海鹏;李夏;何蓉蓉;王世松.MIMO-OFDM系统中的信道估计算法优化方法研究[J].中国新技术新产品. 2025
[2]赵靖博.MIMO-OFDM通信系统中协作式无线感知理论与方法研究[D].北京邮电大学. 2025

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1160529.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VibeVoice-TTS参数详解:声学分词器与LLM协同机制解析

VibeVoice-TTS参数详解:声学分词器与LLM协同机制解析 1. 技术背景与核心挑战 在高质量语音合成领域,传统文本转语音(TTS)系统长期面临三大瓶颈:长序列建模效率低、多说话人一致性差、对话轮次转换生硬。尤其是在播客…

VibeVoice-TTS开源优势解析:自主部署与数据安全实战落地

VibeVoice-TTS开源优势解析:自主部署与数据安全实战落地 1. 引言:为何选择VibeVoice-TTS进行自主部署? 随着生成式AI技术的快速发展,文本转语音(TTS)系统已从简单的单人朗读演进到支持多角色、长篇幅、富…

VibeVoice-TTS生产环境部署:企业级语音应用落地实践

VibeVoice-TTS生产环境部署:企业级语音应用落地实践 1. 引言:企业级语音合成的现实挑战与VibeVoice的定位 随着智能客服、有声内容生成、虚拟主播等应用场景的不断扩展,企业对高质量、长文本、多角色语音合成的需求日益增长。传统TTS系统在…

腾飞!提示工程架构师优化提示系统,推动用户留存腾飞

腾飞!提示工程架构师优化提示系统,推动用户留存腾飞 一、 引言 钩子 (The Hook): 你投入巨资打造的 AI 对话助手功能强大,用户初次使用时惊叹不已,然而一个月后,活跃用户数却断崖式下滑。问题出在哪里?当用…

计算机毕设 java 基于 java 与 QML 的物业管理平台设计 基于物联网技术的智能物业管理平台 物业综合服务与事务管理系统

计算机毕设 java 基于 java 与 QML 的物业管理平台设计(配套有源码 程序 mysql 数据库 论文)本套源码可以先看具体功能演示视频领取,文末有联 xi 可分享疫情后,传统物业管理模式存在车位管理混乱、费用缴纳不便、报修投诉处理低效…

AnimeGANv2如何防止滥用?内容审核机制部署指南

AnimeGANv2如何防止滥用?内容审核机制部署指南 1. 背景与挑战 随着深度学习技术的快速发展,基于生成对抗网络(GAN)的图像风格迁移应用逐渐走向大众化。AnimeGANv2作为轻量高效的人像动漫化模型,凭借其小体积、高画质…

【毕业设计】基于python-CNN深度学习训练识别夏冬季节风景

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

VibeVoice-TTS语音节奏:语速控制参数调整教程

VibeVoice-TTS语音节奏:语速控制参数调整教程 1. 引言 1.1 业务场景描述 在播客、有声书、虚拟角色对话等长文本语音合成场景中,自然流畅的语音输出是用户体验的核心。传统的TTS系统往往在多说话人支持、语调表现力和长序列连贯性方面存在明显短板。微…

计算机毕设 java 基于 Java 实习网站购物的制作 基于 Web 的实习购物一体化服务平台 多角色协同实习购物管理系统

计算机毕设 java 基于 Java 实习网站购物的制作(配套有源码 程序 mysql 数据库 论文)本套源码可以先看具体功能演示视频领取,文末有联 xi 可分享在互联网普及背景下,传统购物平台存在信息杂乱、操作繁琐、互动不足等问题&#xff…

【MIMO通信】低复杂度分布XL-MIMO多用户检测【含Matlab源码 14939期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞&…

小白必看!通义千问2.5-7B-Instruct与vLLM集成避坑指南

小白必看!通义千问2.5-7B-Instruct与vLLM集成避坑指南 1. 引言 随着大模型在实际业务场景中的广泛应用,如何高效部署并快速验证模型能力成为开发者关注的核心问题。通义千问2.5-7B-Instruct作为阿里云最新发布的中等体量指令微调模型,凭借其…

【MIMO通信】基于matlab RLS算法MIMO卫星信道的均衡化【含Matlab源码 14943期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞&#x1f49…

提示工程架构师的智能城市策略:Agentic AI是王牌

提示工程架构师的智能城市策略:用Agentic AI打造会思考的城市关键词:提示工程架构师、Agentic AI、智能城市、多智能体系统、自动规划、人机协作、城市治理 摘要:当我们抱怨早高峰堵车、垃圾没及时收、充电桩不够用时,智能城市的核…

【MIMO通信】多用户全息MIMO表面:信道建模与频谱效率分析【含Matlab源码 14940期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞&…

全网最全MBA必备AI论文写作软件TOP8测评

全网最全MBA必备AI论文写作软件TOP8测评 为什么需要一份专业的MBA论文写作工具榜单? MBA论文写作不仅是学术能力的体现,更是职业发展的关键环节。随着AI技术的快速发展,越来越多的MBA学生开始借助AI工具提升写作效率、优化逻辑结构和规范格式…

从零开始搭建开发环境:STM32CubeMX下载安装操作指南

手把手带你装好STM32CubeMX:从下载到跑通第一个工程 你是不是也曾在嵌入式开发的门口徘徊过?面对密密麻麻的数据手册、复杂的时钟树计算和一堆寄存器配置,刚入门的新手很容易被劝退。别急——今天我们就来解决这个“第一道坎”: …

VibeVoice-TTS安全性评估:企业应用部署注意事项

VibeVoice-TTS安全性评估:企业应用部署注意事项 1. 引言:VibeVoice-TTS在企业场景中的潜力与挑战 随着生成式AI技术的快速发展,文本转语音(TTS)系统正逐步从实验室走向实际业务场景。微软推出的 VibeVoice-TTS 凭借其…

AnimeGANv2实战教程:打造个人动漫风格照片处理系统

AnimeGANv2实战教程:打造个人动漫风格照片处理系统 1. 学习目标与项目背景 随着深度学习技术的发展,图像风格迁移已成为AI应用中最受欢迎的领域之一。其中,将真实人像或风景照片转换为二次元动漫风格的需求尤为突出,广泛应用于社…

AnimeGANv2教程:如何用8MB模型实现高质量风格迁移

AnimeGANv2教程:如何用8MB模型实现高质量风格迁移 1. 引言 1.1 学习目标 本文将带你全面掌握 AnimeGANv2 的使用方法与技术原理,重点介绍如何利用仅 8MB 的轻量级模型 在 CPU 环境下实现高质量的照片到二次元动漫风格迁移。通过本教程,你将…

【信道估计】基于matlab分布式正交匹配追踪毫米波MIMO信道估计【含Matlab源码 14941期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞&#x1f49…