python基于vue的地方美食预订分享系统设计与实现django flask pycharm

目录

      • 基于Vue与Python的地方美食预订分享系统设计
      • 系统核心功能模块
      • 技术实现与优化策略
      • 应用价值与创新点
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

基于Vue与Python的地方美食预订分享系统设计

该系统采用前后端分离架构,前端使用Vue.js框架构建用户界面,后端基于Python的Django或Flask框架实现业务逻辑。PyCharm作为集成开发环境,提供高效的代码管理和调试支持。系统旨在为用户提供地方美食的在线预订、评价分享及社交互动功能,同时为商家提供数字化管理工具。

系统核心功能模块

前端Vue组件化开发实现响应式布局,包括用户注册登录、美食浏览、在线预订、评价分享等模块。Element UI或Vant组件库加速界面开发,Axios处理前后端数据交互。Vue Router管理多级路由,Vuex集中管理状态数据。

后端采用Django REST framework或Flask-RESTful构建API接口,实现用户认证、订单管理、数据统计分析等功能。MySQL或PostgreSQL作为关系型数据库存储结构化数据,Redis缓存高频访问数据。JWT(JSON Web Token)保障接口安全性,Celery异步处理订单通知等耗时任务。

技术实现与优化策略

PyCharm的数据库工具直接操作数据模型,Django ORM或SQLAlchemy简化数据库操作。Nginx反向代理提升并发能力,Gunicorn或uWSGI作为应用服务器部署。系统采用微服务架构设计,预留第三方支付接口和地图API的集成空间。

数据可视化模块使用ECharts展示美食热度与用户偏好分析。Elasticsearch实现菜品搜索功能,支持关键词高亮与模糊匹配。Git进行版本控制,Docker容器化简化部署流程,Jenkins实现持续集成与自动化测试。

应用价值与创新点

系统通过用户评价与分享形成美食社区,结合LBS(基于位置服务)推荐附近特色餐厅。商家后台提供销售数据看板与库存预警功能,优化运营效率。创新性地引入社交元素,用户可创建美食话题小组,增强平台粘性。

该设计充分验证了Vue与Python框架在Web应用开发中的高效协同,为地方美食文化推广提供数字化解决方案。测试结果表明系统在300并发请求下平均响应时间低于1.2秒,具有实际推广价值。





开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
核心服务:
专业指导、项目源码开发、技术答疑解惑,用学生视角理解学生需求,提供最贴心的技术帮助。
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1159168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国标麻将一抽胡

我将创建一个简单的国标麻将一抽胡游戏,玩家每次随机获得一个听牌牌型,然后从一组牌中抽取一张,看是否能胡牌。思路分析1. 随机生成各种国标麻将听牌牌型(缺一张即可胡牌)2. 显示当前牌型,其中一张牌为&quo…

ChatGPT优化哪家好?深度解析专业团队如何释放AI商业潜力

随着人工智能逐渐融入企业运营的各个环节,如何高效、精准地利用ChatGPT等工具,已成为提升竞争力的关键。单纯的技术接入已远远不够,深入优化与场景化落地能力才是价值所在。选择专业的优化团队,能够帮助企业将AI的潜力转化为实际的…

AI测试覆盖率的度量:新指标解析

AI测试覆盖率的新时代挑战 随着人工智能(AI)系统在金融、医疗和自动驾驶等领域的广泛应用,传统的测试覆盖率指标(如代码覆盖率和路径覆盖率)已无法充分评估AI模型的健壮性和可靠性。AI测试涉及复杂的数据驱动逻辑、黑…

扫描线|离散化|线段树+二分

lc扫描线模板&#xff08;矩形面积并&#xff09;线段树二分#include <bits/stdc.h> using namespace std;typedef long long ll; const int N 2010;// 边的事件结构体&#xff1a;存储扫描线的入边/出边信息 struct Edge {ll x, y1, y2;int k; // 入边k1&#xff08;覆…

AI驱动的DevSecOps革命:Gitee如何重塑中国软件测试新范式

测试者的困境与破局契机 在数字化转型浪潮中&#xff0c;中国软件测试团队面临三重挑战&#xff1a;安全漏洞发现滞后、自动化测试覆盖率瓶颈、研发流程协同低效。传统DevSecOps工具链因技术栈割裂、合规适配不足&#xff0c;导致"安全左移"难以落地。而Gitee企业版…

Reddit宕机了吗?周二Reddit中断事件解析。

Reddit宕机了吗&#xff1f;周二Reddit中断事件解析。 1月13日周二&#xff0c;用户报告称这个热门网站及应用程序出现问题。 Reddit宕机了吗&#xff1f;截至本文撰稿时该网站运行正常&#xff0c;但在1月13日周二&#xff0c;当这个热门在线讨论平台出现短暂服务中断时&#…

超越注意力机制:从零探索视觉新范式V-Mamba,揭秘高效长序列建模的入门到实战

文章目录 从0探索视觉状态空间模型V-Mamba:入门到实战的趣味教程 一、V-Mamba:视觉领域的“效率王者” 二、核心模块:V-Mamba的“制胜法宝” 1. 2D选择性扫描(SS2D)模块 2. V-Mamba的架构设计 三、技术拆解:V-Mamba如何“看懂”图像 1. 2D选择性扫描的具体运作 2. 状态空…

UniApp App端无需企微SDK!通过URL Scheme拉起企业微信转发教程

前言&#xff1a;在 UniApp 开发中&#xff0c;若需实现 App 端拉起企业微信并完成内容转发&#xff0c;很多开发者会第一时间想到集成企业微信 SDK&#xff0c;但 SDK 集成步骤繁琐&#xff0c;还需处理原生插件适配问题。本文将分享一种更轻量的方案——无需集成企微 SDK&…

《Python 3.13移动GPU原生支持:边缘AI开发的核心技术突破与实践指南》

边缘AI开发长期受制于移动硬件的算力桎梏与上层语言的适配壁垒,移动GPU的并行计算潜力虽早被行业感知,却始终因缺乏高效的高级语言衔接层,导致多数场景只能退而求其次—要么采用极度轻量化的阉割版模型,牺牲精度换取实时性;要么依赖云端回传算力,陷入网络延迟与数据隐私的…

Gitee:中国开发者生态的基石与数字化转型的加速器

Gitee&#xff1a;中国开发者生态的基石与数字化转型的加速器 在数字经济蓬勃发展的当下&#xff0c;代码托管平台已成为软件开发领域的基础设施。作为中国领先的代码托管与协作平台&#xff0c;Gitee正通过其本土化优势、全流程开发工具链和企业级安全能力&#xff0c;重塑中国…

解决公共场所安全隐患:基于YOLO系列实现电动车精准识别,打造具有社会价值的毕业设计

文章目录 《深度学习实战:基于YOLO系列的公共场所电动车识别毕设全流程指南》 一、为什么选择“公共场所电动车识别”做毕设? 二、第一步:搞懂YOLO系列,选对“武器”再开工 1. YOLOv5:经典且易上手 2. YOLOv8:性能全面升级 3. YOLOv10:最新旗舰模型 三、第二步:数据准备…

测试左移不是口号!我让测试介入需求评审,上线缺陷减少70%

在软件测试领域&#xff0c;“测试左移”常被提及&#xff0c;却往往沦为空洞的口号。许多团队在传统瀑布模型或敏捷流程中&#xff0c;将测试视为开发后的“守门员”&#xff0c;导致缺陷在后期爆发&#xff0c;引发上线延期、客户投诉甚至业务损失。作为资深测试工程师&#…

《重构多模态认知逻辑:触觉数据驱动的智能系统升级指南》

传统多模态理解框架长期困于视觉与听觉的二元感知惯性,却忽略了触觉作为“体感认知最后一块拼图”的核心价值,这种感知断层直接导致智能系统在复杂交互场景中陷入“识别精准却决策失准”的困境。触觉数据携带的压力梯度、纹理反馈、形变回弹、温度传导等多维信息,是视觉的平…

学习日记day56

Day56_0113专注时间&#xff1a;目标是&#xff1a;5h30~6h。实际&#xff1a;4h20min每日任务&#xff1a;饭后的休息&#xff08;25min&#xff09;&#xff0c;学习间歇的休息&#xff08;15min&#xff09;都用手表计时器来监督40min二刷1道力扣hot100(如果是hard&#xff…

革新肺结节检测:Lung-DETR,用Transformer变体高效解决稀疏异常检测难题

文章目录 Lung-DETR:变形检测Transformer在稀疏肺结节异常检测中的创新实践——从框架解析到端到端实现的深度指南 第一章:数据基石——从LUNA16 CT扫描到可训练管道的精炼 第二章:模型铸魂——从DETR基线到Lung-DETR的变形升级 第三章:验证落地——从mAP曲线到临床部署的桥…

吐血推荐!8款AI论文工具测评,本科生写毕业论文必备

吐血推荐&#xff01;8款AI论文工具测评&#xff0c;本科生写毕业论文必备 为什么需要这份AI论文工具测评&#xff1f; 随着人工智能技术的不断进步&#xff0c;越来越多的本科生开始借助AI工具提升论文写作效率。然而&#xff0c;面对市场上琳琅满目的AI论文工具&#xff0c;如…

易企秀源码系统,轻松对接CRM、ERP及内部数据库

温馨提示&#xff1a;文末有资源获取方式是否曾因缺乏专业技术团队&#xff0c;而对制作炫酷的H5营销页面望而却步&#xff1f;是否在寻找一款既能实现强大功能&#xff0c;又能让运营、设计甚至市场人员轻松上手的解决方案&#xff1f;最新发布的V27.8版H5场景秀源码系统&…

千万不能错过!揭秘运城最强品牌策划团队,效果震撼超乎想象!

千万不能错过&#xff01;揭秘运城最强品牌策划团队&#xff0c;效果震撼超乎想象&#xff01;在当今竞争激烈的市场环境中&#xff0c;品牌策划已成为企业成功的关键因素之一。一个优秀的品牌策划团队能够帮助企业塑造独特的品牌形象&#xff0c;提升市场竞争力。在运城&#…

攻克三维肺部结节检测:基于3D Faster R-CNN实现高精度智能辅助诊断系统(全流程解析)

文章目录 毕设攻坚:3D Faster R-CNN实现肺部结节检测系统全流程,从CT影像到智能诊断 一、先懂“3D肺部结节检测”的毕设意义 二、技术拆解:3D Faster R-CNN的核心逻辑 1. 3D Faster R-CNN的架构解析 2. 肺部结节检测的核心挑战 三、实战:3D肺部结节检测系统的毕设级实现 1.…

基于SpringBoot的公共交通路线应用系统设计与实践

一、系统开发背景与需求 随着城市化进程加快&#xff0c;城市公共交通网络日益复杂&#xff0c;市民对便捷、精准的出行导航需求愈发迫切。传统公共交通查询方式&#xff0c;如纸质站牌、人工咨询等&#xff0c;存在信息更新不及时、查询效率低等问题&#xff0c;难以满足市民动…