【收藏向】大模型应用开发秋招面经全解析!覆盖30+公司,小白/程序员必看

今天给大家分享一份新鲜出炉的大模型应用开发秋招面经,从面试范围、核心总结到高频面试题全梳理,希望能帮到正在冲击大模型秋招的同学,尤其是刚入门的小白和想转型大模型应用开发的程序员,建议收藏慢慢看!

1、时间范围

近半年。

2、实际面过的公司

阿里、腾讯、美团、字节、快手、同程、京东、360、keep、滴滴、印象笔记、作业帮、彩云科技、蓝色光标、江城互娱、Aviagames、Hungry Stdios、深言科技、即时科技、RockFlow、格灵深瞳、百融云创、印象笔记、网龙、 HiDream.ai、昆仑万维、数驱互动、Authing。

3、先说总结

(1)面试内容 & 难度

个人觉得,在 LLM 应用的面试题上,没有太多复杂、高深的问题,不像上来让你说一下分布式锁怎么设计然后死扣设计细节或是描述一下 MVCC 原理这种偏高难度的八股文问题(当然也遇到了一两次)。

究其原因以下几点:

  • 一是大模型应用目前仍没有很成熟且被广泛接纳的方案,都还在探索;
  • 二是很多公司今年刚开始 all in AI(我司 all 进去的比较早点),面试官也懂得不多。

例如 RAG 这个东西,大部分的面试题无非是“你觉得 RAG 中最难的是什么?(文档切割喽)”、“你是怎么解决幻觉问题的?”,“微调和 RAG 的区别是啥?”等等。

如果你做过 RAG 加上你经常看技术文章结合你的“侃侃而谈”,基本面试官都觉得 ok。

但这里着重说一下我觉得当前非常重要且极大概率提升面试通过率的的一个技术点,就是掌握微调原理并且做过动手做过微调工作再加上动手部署过大模型

这是我面试中最常被问到而又只能说没做过的问题,当然大部分公司都有专门的算法团队去做这件事,自己到没机会参与其中,也是可以理解的。

算法题:一半是 DP 问题,还有一部分难度是 easy 的问题,总体上都是“老熟人”,但是,你即使写出来,面试不一定就能过,有的干脆就不考算法题。

八股文:明显比之前少很多,这个和面试的岗位有关系,LLM 应用的岗位更偏实践,所有很多一面就是 leader 面,直接问项目,除非一面也不懂 LLM 的东西,就会考八股文。

但总的来说,八股少了,但是绝对不可以不准备,好几次挂在这上面,别小瞧它。

岗位内容:

  • 游戏公司:基本上是 LLM + AB test for 游戏策划;BI 分析;游戏社区客服助手;
  • toC:Agent 个人助手
  • toB:Agent for 解决方案
  • other:通用 Agent 平台;公司内部 AI 助手、平台;Agent for 运维

(2)offer

会有很多横向对比,如果你期望薪资比较高,对方说要在等等,基本上凉了。

大部分涨幅基本是不到 20% 的,但我的期望是 30% 左右,最后还是拿到了(要有一点点耐心,还要有一定的运气)。

不要眼高手低,先拿一个低于自己预期的 offer,再慢慢谈,前提是公司想要你。

规划好时间,集中面试,集中对比,由于我时间线拉的过长,后面安排的很乱。

(3)再总结

如下:

  • 每次面完都要复盘,没答好的问题,一定要重新梳理答案。
  • 没把握问题的可以直接说不会,别给个你自己都听不懂的答案。
  • 简历一定要让大模型润色,但自己要 check 一遍,别吹过头了。
  • 多看技术文章,扩展技术视野,提高二面面试官对你的印象。
  • 表达一定要流畅清晰,不要断断续续的,面试官会觉得你思路不清晰。
  • 项目效果评估是个很重要的问题,不管你的技术多炫酷,终究还是要看效果,看落地效果。

4、面试题

这里想到多少写多少。

LLM 基础:

  • 大模型是怎么训练出来的?
  • Transform 的架构,Encoder 和 Decoder 是什么?
  • Function Call 是怎么训练的?
  • 微调的方案有哪些?自己做过没有?
  • 大模型分词器是什么?
  • Embedding 是什么?你们用的那个模型?

Lib:

  • 介绍一下 langchian
  • 介绍一下 autogen
  • 有没有用过大模型的网关框架(litellm)
  • 为什么手搓 agent,而不是用框架?
  • mcp 是什么?和 Function Call 有什么区别?有没有实践过?
  • A2A 了解吗?

Prompt:

  • ReAct 是啥?怎么实现的?
  • CoT 是啥?为啥效果好呢?有啥缺点?
  • Prompt Caching 是什么?
  • 温度值/top-p/top-k 分别是什么?各个场景下的最佳设置是什么?

RAG:

  • 你介绍一下RAG 是什么?最难的地方是哪?
  • 文档切割策略有哪些?怎么规避语义被切割掉的问题?
  • 多路召回是什么?
  • 文档怎么存的?粒度是多大?用的什么数据库?
  • 为啥要用到图数据库?
  • 向量数据库的对比有没有做过?Qdrant 性能如何?量级是多大?有没有性能瓶颈?
  • 怎么规避大模型的幻觉?
  • 微调和 RAG 的优劣势?
  • 怎么量化你的回答效果?例如检索的效果、回答的效果。

workflow:

  • 怎么做的任务拆分?为什么要拆分?效果如何?怎么提升效果?
  • text2sql 怎么做的?怎么提高准确率?
  • 如何润色query,目的是什么?
  • code-generation 是什么做的?如何确保准确性?
  • 现在再让你设计你会怎么做?(replan)
  • 效果是怎么量化的?

Agent:

  • 介绍一下你的 Agent 项目
  • 长短期记忆是怎么做的?记忆是怎么存的?粒度是多少?怎么用的?
  • Function Call 是什么做的?
  • 你最大的难题是什么?你是怎么提高效果的?怎么降低延迟的?
  • 端到端延迟如何优化的?
  • 介绍一下 single-agent、multi-agent 的设计方案有哪些?
  • 反思机制是什么做的?为什么要用反思?
  • 如何看待当下的 LLM 应用的趋势和方向
  • 为什么要用 Webrtc?它和 ws 的区别是什么?
  • agent 服务高可用、稳健性是怎么保证的?
  • llm 服务并发太高了怎么办?

系统设计题:

  • 短链系统

  • 分布式锁的设计

  • 给你一部长篇小说,怎么做文档切割?

  • 怎么做到论文翻译,并且格式尽可能和原来的统一

  • 游戏社区客服助手设计。如何绑定游戏黑话,如何利用好公司内部的文档

  • 结合线上问题快速定位项目工程代码有问题的地方

  • 有很多结构化和非结构化数据,怎么分析,再怎么得出我要的结论

八股:

  • go 的内存分配策略、GMP、GC
  • python 的内存分配策略、GC
  • redis 用过那些?mget 底层什么实现的?、zset 怎么实现的?
  • mysql 索引怎么设计最好?数据库隔离级别?mvcc 是怎么实现的?
  • 分布式锁是什么实现的?
  • kafka 的 reblance 是什么?会产生那些问题?怎么保证数据不丢?
  • fastapi 设计原理?
  • go 中 net/http 如何处理的 tcp 粘包问题
  • http2 是什么?比 http1.1 有什么优势?
  • Linux 网络性能调优的方式
  • 如何定位 Linux 中的 pid、端口号等等

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

大模型入门到实战全套学习大礼包

1、大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!


2、大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

3、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

4、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

5、大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

适用人群

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1158806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AnimeGANv2详细步骤:打造个人专属动漫风格转换器

AnimeGANv2详细步骤:打造个人专属动漫风格转换器 1. 引言 1.1 AI二次元转换的兴起 随着深度学习技术的发展,图像风格迁移已成为AI应用中最受欢迎的方向之一。尤其是在动漫文化盛行的背景下,将真实照片自动转换为具有日系二次元风格的艺术图…

AI全身感知技术选型指南:5个关键指标+低成本测试方法

AI全身感知技术选型指南:5个关键指标低成本测试方法 1. 为什么需要全身感知技术选型? 在智能硬件和AI应用开发中,全身感知技术(如动作捕捉、姿态估计)正成为关键基础设施。无论是开发健身APP、虚拟数字人&#xff0c…

【收藏级】2026大模型应用开发学习路线:从小白到实战高手,附免费资源

2018年OpenAI推出GPT-1,成功将人工智能从幕后技术推向行业前沿;2022年GPT-4的横空出世,更是让整个科技圈达成共识——AI将是下一个确定性风口。2024年,OpenAI提出人工智能发展五阶段理论,为行业发展指明方向&#xff1…

学术变形记:书匠策AI如何让课程论文写作“破茧成蝶”

当你在图书馆对着空白文档抓耳挠腮,当你在选题迷宫中兜兜转转,当你在文献海洋里窒息挣扎——这些场景是否让你想起自己写课程论文时的崩溃时刻?在学术写作这场“变形记”中,书匠策AI(官网:http://www.shuji…

SGLang量化实战:FP8推理省显存

SGLang量化实战:FP8推理省显存指南 1. 为什么需要FP8量化? 当你尝试在16GB显存的显卡上运行DeepSeek-V3这样的千亿参数大模型时,可能会遇到显存不足的问题。FP8量化技术就像给模型"瘦身",能显著减少显存占用&#xff…

学术“变形记”:书匠策AI如何重塑课程论文写作新生态

在学术江湖里,课程论文是每位学子必经的“新手村任务”。有人熬夜爆肝查文献,有人对着空白文档抓耳挠腮,更有人因选题老套、逻辑混乱被导师“打回重造”。当传统写作模式陷入内耗怪圈,一款名为书匠策AI的科研工具正以“学术变形金…

天禹兴业借助订单日记实现降本增效双突破

一、客户背景 新疆天禹兴业环保科技有限公司,成立于2009年,位于新疆乌鲁木齐市经济技术开发区,是一家以从事销售环境监测专用仪器、直饮水设备、过滤设备等产品为主的企业。 在业务不断壮大的过程中,面临订单处理效率低、统计数据…

AnimeGANv2应用指南:动漫风格电商主图制作

AnimeGANv2应用指南:动漫风格电商主图制作 1. 技术背景与应用场景 随着AI生成技术的快速发展,风格迁移在电商、社交和内容创作领域展现出巨大潜力。传统商品主图设计依赖专业美工团队,成本高、周期长。而基于深度学习的图像风格迁移技术&am…

SGLang-v0.5.6避坑指南:云端镜像开箱即用,省去3天配置时间

SGLang-v0.5.6避坑指南:云端镜像开箱即用,省去3天配置时间 引言:为什么你需要这个镜像? 如果你正在复现SGLang相关论文,大概率已经体会过这样的痛苦:CUDA版本不兼容、Python包冲突、环境配置报错...这些技…

VibeVoice-TTS语音保真度提升:声学细节生成部署技巧

VibeVoice-TTS语音保真度提升:声学细节生成部署技巧 1. 背景与技术挑战 在高质量文本转语音(TTS)系统的发展过程中,长音频合成、多说话人对话建模以及语音自然度一直是核心挑战。传统TTS模型通常受限于上下文长度、说话人切换生…

AnimeGANv2定时任务设计:自动清理缓存图片的脚本实现

AnimeGANv2定时任务设计:自动清理缓存图片的脚本实现 1. 背景与需求分析 1.1 AI二次元转换器的应用场景 随着深度学习在图像风格迁移领域的快速发展,AnimeGANv2 成为轻量级、高效率的人像动漫化模型代表。其基于生成对抗网络(GAN&#xff…

SGLang对话系统Demo:1小时1块快速体验,支持流式输出

SGLang对话系统Demo:1小时1块快速体验,支持流式输出 1. 什么是SGLang对话系统? SGLang是一个专为结构化语言模型程序优化的运行时系统,特别适合构建多轮对话、逻辑推理等复杂AI应用。想象一下,你正在和一个AI助手聊天…

通义千问2.5-7B-Instruct功能实测:代码生成能力超预期

通义千问2.5-7B-Instruct功能实测:代码生成能力超预期 1. 引言 随着大模型在编程辅助、自动化脚本生成和工程开发中的广泛应用,开发者对中小型语言模型的实用性、响应速度与代码质量提出了更高要求。通义千问2.5-7B-Instruct作为阿里于2024年9月发布的…

PPT在线制作:如何用模板提升内容输出效率

做PPT时,你有没有过这样的困扰:新手对着空白页不知道怎么排版,老手要花1小时调整字体和对齐,团队协作时风格混乱得像“拼贴画”?其实解决这些问题的关键,不是学更复杂的设计技巧,而是选对并用好…

没预算怎么学SGLang?学生认证免费领50元GPU额度

没预算怎么学SGLang?学生认证免费领50元GPU额度 1. 什么是SGLang? SGLang(Structured Generation Language)是一个专为结构化语言模型程序设计的执行引擎。简单来说,它就像是为AI模型打造的"加速器"&#…

导师严选10个AI论文工具,助你轻松搞定本科论文!

导师严选10个AI论文工具,助你轻松搞定本科论文! AI 工具如何助力论文写作,轻松应对学术挑战 在当今高校教育中,论文写作已成为本科生必须面对的重要任务。无论是开题报告、文献综述还是最终的毕业论文,都需要大量的时间…

5分钟快速部署通义千问2.5-7B-Instruct,AI助手轻松上手

5分钟快速部署通义千问2.5-7B-Instruct,AI助手轻松上手 1. 引言:为什么选择通义千问2.5-7B-Instruct? 在当前大模型快速发展的背景下,如何在本地环境中高效部署一个性能强、响应快、支持商用的中等规模语言模型,成为…

VibeThinker-1.5B部署避坑:常见错误与解决方案汇总

VibeThinker-1.5B部署避坑:常见错误与解决方案汇总 1. 引言 随着轻量级大模型在边缘计算和低成本推理场景中的需求日益增长,微博开源的 VibeThinker-1.5B 凭借其小参数量(仅15亿)与出色的数学及编程推理能力,迅速吸引…

SGLang-v0.5.6实战指南:云端GPU开箱即用,2块钱玩一下午

SGLang-v0.5.6实战指南:云端GPU开箱即用,2块钱玩一下午 引言:为什么产品经理需要关注SGLang? 作为产品经理,当你需要快速验证一个AI技术方案时,最头疼的往往是两件事:第一是公司没有现成的GPU…