Python数据治理全攻略:从爬虫清洗到NLP情感分析
数据爬取与采集
使用requests或scrapy框架抓取目标网站数据,注意遵守robots.txt协议。动态页面可采用selenium模拟浏览器行为。示例代码:
import requests response = requests.get('https://example.com/api', headers={'User-Agent': 'Mozilla/5.0'})数据清洗与预处理
通过pandas处理缺失值和异常值,正则表达式清理文本噪声。结构化数据建议使用OpenRefine工具。示例:
import pandas as pd df = pd.read_csv('raw_data.csv').dropna().drop_duplicates()存储方案设计
根据数据量级选择存储方式:小型数据用CSV/JSON,中型数据用SQLite/MySQL,海量数据考虑MongoDB或分布式HDFS。示例:
import sqlite3 conn = sqlite3.connect('data.db') df.to_sql('cleaned_data', conn)NLP情感分析实现
使用nltk或transformers库进行文本情感分析。BERT模型可达到state-of-the-art效果。示例流程:
from transformers import pipeline classifier = pipeline("sentiment-analysis") result = classifier("I love Python programming!")自动化监控与更新
通过APScheduler设置定时任务,结合日志模块实现异常报警。完整方案应包含数据版本控制和质量评估指标:
from apscheduler.schedulers.background import BackgroundScheduler scheduler = BackgroundScheduler() scheduler.add_job(data_pipeline, 'interval', hours=24)可视化与报告生成
使用matplotlib或Plotly展示数据分布,Jinja2模板生成HTML报告。关键指标应包括数据完整性、情感分布趋势等。示例:
import matplotlib.pyplot as plt df['sentiment'].value_counts().plot(kind='bar') plt.savefig('report.png')https://www.zhihu.com/zvideo/1994542087069250268/
https://www.zhihu.com/zvideo/1994542086419132838/
https://www.zhihu.com/zvideo/1994542084653352203/
https://www.zhihu.com/zvideo/1994542083780940506/
https://www.zhihu.com/zvideo/1994542083864809883/
https://www.zhihu.com/zvideo/1994542082451329867/
https://www.zhihu.com/zvideo/1994542080337413411/
https://www.zhihu.com/zvideo/1994542077841793688/
https://www.zhihu.com/zvideo/1994542077560779350/
https://www.zhihu.com/zvideo/1994542071093155096/
https://www.zhihu.com/zvideo/1994542068731769553/
https://www.zhihu.com/zvideo/1994542068262015045/
https://www.zhihu.com/zvideo/1994542066882081557/
https://www.zhihu.com/zvideo/1994542065607010259/
https://www.zhihu.com/zvideo/1994542064726193670/
https://www.zhihu.com/zvideo/1994542063245603905/
https://www.zhihu.com/zvideo/1994542061307856830/
https://www.zhihu.com/zvideo/1994542059474929592/
https://www.zhihu.com/zvideo/1994542052176851616/
https://www.zhihu.com/zvideo/1994542051082130713/
https://www.zhihu.com/zvideo/1994542048955626689/
https://www.zhihu.com/zvideo/1994542048334857389/
https://www.zhihu.com/zvideo/1994542048242594984/
https://www.zhihu.com/zvideo/1994542047751869616/
https://www.zhihu.com/zvideo/1994542046862652039/
https://www.zhihu.com/zvideo/1994542046057353371/
https://www.zhihu.com/zvideo/1994542043276543376/
注:实际部署时应考虑反爬策略、GDPR合规要求及模型可解释性等问题。完整技术栈可能涉及Airflow调度、Prometheus监控等工具链集成。