基于YOLOv8的工业织物瑕疵检测识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

基于YOLOv8的工业织物瑕疵检测识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

基本功能演示

https://www.bilibili.com/video/BV1G1r6BuEga/

源码在哔哩哔哩视频简介处。

项目摘要

在纺织制造与高端材料加工过程中,织物表面瑕疵直接影响产品质量等级与出厂合格率。尤其对于C1 类高精细织物(如粘胶纤维、丝绸等),其表面纹理极弱、结构特征不明显,传统基于规则或人工经验的检测方法在复杂光照与高速产线条件下,往往难以实现稳定、精准的瑕疵识别。

本项目基于YOLOv8 目标检测模型,构建了一套工业织物瑕疵智能检测与识别系统,面向弱纹理背景下的织物表面缺陷场景,实现对洞(Hole)异物(Foreign Object)油斑(Oil Stain)织线错误(Weaving Defect)四类典型工业瑕疵的自动检测与定位。系统集成PyQt5 图形化界面,支持图片、文件夹、视频及摄像头等多种输入方式,便于在实验环境与实际产线场景中使用。

项目提供完整可运行源码、标准化标注数据集、训练权重文件以及详细的训练与部署说明,实现从模型训练到检测应用的完整闭环,适用于工业视觉检测研究、质量控制系统原型开发及相关课程与毕业设计。

文章目录

  • 基于YOLOv8的工业织物瑕疵检测识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
    • 基本功能演示
    • 项目摘要
    • 前言
  • 一、软件核心功能介绍及效果演示
      • 1. 多类别工业织物瑕疵检测
      • 2. 多输入源缺陷检测模式
      • 3. PyQt5 工业视觉检测界面
      • 4. 完整训练流程与工程复现能力
      • 5. 实际检测效果说明
  • 二、软件效果演示
    • (1)单图片检测演示
    • (2)多文件夹图片检测演示
    • (3)视频检测演示
    • (4)摄像头检测演示
    • (5)保存图片与视频检测结果
  • 三、模型的训练、评估与推理
    • 3.1 YOLOv8的基本原理
    • 3.2 数据集准备与训练
    • 3.3. 训练结果评估
    • 3.4检测结果识别
  • 四.YOLOV8+YOLOUI完整源码打包
    • 4.1 项目开箱即用
    • 4.2 完整源码
  • 总结

前言

随着制造业向高端化与智能化方向持续升级,基于计算机视觉的自动缺陷检测已成为工业质量控制中的核心技术之一。相比具有明显纹理与结构特征的金属或印刷表面,高精细织物表面往往呈现弱纹理、低对比度、特征细微等特点,对检测算法的特征提取能力与鲁棒性提出了更高要求。

在实际生产中,洞、油斑或织线错误等缺陷尺寸较小、形态多变,且在不同光照条件下视觉特征差异明显,传统机器视觉方法依赖人工设定阈值与规则,泛化能力有限。而深度学习目标检测模型,尤其是以 YOLO 系列为代表的端到端检测框架,在复杂背景与小目标检测任务中展现出显著优势。

YOLOv8 在网络结构设计、特征融合与训练策略方面进行了多项优化,在保证检测精度的同时兼顾推理速度与工程可部署性,非常适合工业产线实时或准实时检测需求。本项目结合真实工业织物瑕疵数据,对 YOLOv8 在弱纹理缺陷检测场景下的应用进行系统化实践,为工业视觉检测提供可复现的工程参考。

一、软件核心功能介绍及效果演示

1. 多类别工业织物瑕疵检测

系统基于 YOLOv8 目标检测模型,实现对工业织物表面多种缺陷的自动识别与定位,支持以下四类瑕疵:

  • Hole(洞)
  • Foreign Object(异物)
  • Oil Stain(油斑)
  • Weaving Defect(织线错误)

检测结果以边界框形式叠加显示在原始图像或视频画面上,并同步标注瑕疵类别与置信度,便于质量检测人员快速判断缺陷类型与位置。


2. 多输入源缺陷检测模式

系统支持多种输入方式,满足不同应用阶段的检测需求:

  • 单张图片检测:用于样本分析与算法验证
  • 图片文件夹批量检测:适用于离线质量抽检
  • 视频文件检测:模拟连续产线检测过程
  • 实时摄像头检测:满足工业现场在线检测需求

所有检测模式均可通过图形界面一键切换,无需修改代码。


3. PyQt5 工业视觉检测界面

项目基于 PyQt5 构建桌面端可视化界面,主要功能包括:

  • 模型权重加载与管理
  • 检测模式与输入源选择
  • 实时检测画面显示
  • 缺陷识别结果与运行状态提示

该界面降低了模型使用门槛,使算法工程人员与现场技术人员均可快速完成检测任务。


4. 完整训练流程与工程复现能力

项目提供完整的 YOLOv8 训练与推理流程,包含:

  • 标准 YOLO 格式的工业织物瑕疵数据集
  • 类别配置文件与训练参数示例
  • 模型训练、验证与测试脚本
  • 训练完成的权重文件与推理程序

用户可基于现有数据进行二次训练或扩展新瑕疵类别,具备良好的工程扩展性与研究价值。


5. 实际检测效果说明

在弱纹理、高相似度背景的工业织物图像中,系统能够稳定检测不同类型的细微瑕疵,对小尺寸缺陷与低对比度异常具有较好的识别能力,适用于织物质量检测、生产过程监控及缺陷数据统计分析等工业应用场景。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

YOLOv8原理图如下:

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/├── images/│ ├── train/│ └──val/├── labels/│ ├── train/│ └──val/

每张图像有对应的.txt文件,内容格式为:

40.50967212335766420.3528383900778210.39476004233576640.31825755058365757

分类包括(可自定义):

3.3. 训练结果评估

训练完成后,将在runs/detect/train目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

importcv2fromultralyticsimportYOLOimporttorchfromtorch.serializationimportsafe_globalsfromultralytics.nn.tasksimportDetectionModel# 加入可信模型结构safe_globals().add(DetectionModel)# 加载模型并推理model=YOLO('runs/detect/train/weights/best.pt')results=model('test.jpg',save=True,conf=0.25)# 获取保存后的图像路径# 默认保存到 runs/detect/predict/ 目录save_path=results[0].save_dir/results[0].path.name# 使用 OpenCV 加载并显示图像img=cv2.imread(str(save_path))cv2.imshow('Detection Result',img)cv2.waitKey(0)cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect traindata=datasets/expression/loopy.yamlmodel=yolov8n.yamlpretrained=yolov8n.ptepochs=100batch=16lr0=0.001

4.2 完整源码

至项目实录视频下方获取:https://www.bilibili.com/video/BV1G1r6BuEga/

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本文围绕基于 YOLOv8 的工业织物瑕疵检测识别系统,从数据集特点、模型选型到系统工程实现进行了系统性阐述。项目针对C1 类高精细、弱纹理织物表面这一工业视觉中的典型难点场景,实现了对洞、异物、油斑及织线错误等多类微小缺陷的自动检测与精准定位,有效提升了织物质量检测的稳定性与一致性。

在工程实践层面,项目不仅验证了 YOLOv8 在弱纹理缺陷检测任务中的适用性,还通过 PyQt5 图形化界面将算法能力转化为可直接使用的检测工具,支持多输入源与完整训练流程,具备良好的可复现性与可扩展性。整体方案可作为工业视觉检测、制造业质量控制系统原型以及相关教学与科研实验的参考实现,为推动传统织物检测向智能化、自动化方向升级提供了可落地的技术路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1155617.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FNN vs CNN 完全对比指南

1. FNN(前馈神经网络)是什么? 1.1 基本概念 FNN(Feedforward Neural Network),也叫 全连接神经网络(Fully Connected Neural Network) 或 多层感知机(MLP, Multi-Layer P…

【课程设计/毕业设计】基于python-CNN卷积神经网络对蔬菜识别基于深度学习python-CNN卷积神经网络对蔬菜识别

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

图搜商品API的应用场景|技术选型要点

一、图搜商品API的应用场景图搜商品 API 的核心价值是通过图片特征匹配商品信息,打通 “视觉输入→商品识别→交易 / 服务转化” 的链路,其应用场景覆盖电商、社交、零售、二手交易等多个领域,以下是具体落地场景及说明:1. 电商平…

PM2 是什么?一篇讲清 Node.js 进程管理器的文章

在 Node.js 应用部署到服务器之后,开发者很快会遇到几个现实问题: 服务挂了怎么办?服务器重启后应用如何自动恢复?如何管理多个 Node.js 服务?如何查看日志、监控运行状态? PM2(Process Manager…

华为OD机考双机位C卷 - 书籍叠放(Java Python JS C/C++ GO )

最新华为OD机试 真题目录:点击查看目录 华为OD面试真题精选:点击立即查看 华为OD机考双机位C卷 - 书籍叠放 题目描述 书籍的长、宽都是整数对应(l,w)。如果书A的长宽度都比B长宽大时,则允许将B排列放在A上面。 现在有一组规格的书籍&am…

算法题 按奇偶排序数组 II

922. 按奇偶排序数组 II 问题描述 给定一个非负整数数组 nums,其中一半整数是奇数,另一半是偶数。 你需要对数组进行重排序,使得对于所有偶数索引 i,nums[i] 是偶数;对于所有奇数索引 i,nums[i] 是奇数。 返…

计算机毕业设计springboot博物馆藏品管理系统 基于SpringBoot的文博资产数字化运营平台 SpringBoot驱动的博物馆珍藏智慧管护系统

计算机毕业设计springboot博物馆藏品管理系统 (配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。当库房里的宋瓷、青铜、书画越积越多,纸质台账却开始“掉链子”&#x…

鸿蒙ArkTS开发实战-从零打造高可用待办事项App【QuickTodo】

鸿蒙ArkTS开发实战:从零打造高可用待办事项App【QuickTodo】 随着鸿蒙生态的迅速发展,越来越多的开发者开始关注鸿蒙设备的应用开发。在这一背景下,ArkTS成为鸿蒙应用开发的首选语言,其声明式UI、强类型校验以及跨设备适配能力&a…

计算机毕业设计springboot博物馆预约管理系统 基于SpringBoot的文博场馆分时预约平台 SpringBoot驱动的智慧博物馆访客预约与票务系统

计算机毕业设计springboot博物馆预约管理系统 (配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。当“排队两小时,看展十分钟”成为常态,博物馆门口的长龙不仅…

深度调优:在 GNN 涡轮风扇发动机寿命预测中,学习率调度器如何决定模型生死?

前言:为什么学习率是 RUL 预测的“脉搏”? 在处理 NASA C-MAPSS 这样复杂的时间序列空间图结构数据时,我们通常会构建复杂的模型(如时空图卷积网络 ST-GCN 或图注意力网络 GAT)。然而,即使你有最完美的模型…

大数据领域中 Eureka 的服务注册与发现的容灾备份方案

大数据领域中 Eureka 的服务注册与发现的容灾备份方案关键词:大数据、Eureka、服务注册与发现、容灾备份方案、高可用性摘要:在大数据领域,服务的注册与发现是构建分布式系统的关键环节,Eureka 作为 Netflix 开源的服务注册与发现…

某程旅行小程序爬虫技术解析与实战案例

一、小程序爬虫核心技术认知 1. 小程序与传统 Web 爬虫的核心差异 传统 Web 爬虫主要针对 PC 端或移动端网页,基于 HTML 解析、Cookie 维持、HTTP/HTTPS 请求模拟即可完成大部分数据抓取工作。而小程序爬虫的核心差异体现在三个方面: 传输协议与数据格式…

当代人 “最放不下的前任”

1️⃣ 明明知道吃了胖,却还是忍不住想点那家外卖🍟2️⃣ 一直深信能自律,是我做过最自欺欺人的事⏰3️⃣ 嘴上说着要省钱,手却诚实点开购物车🛒4️⃣ 别人问起熬不熬夜,我总说早就早睡,其实在刷…

Python系列Bug修复|如何解决 pip install 安装报错 ModuleNotFoundError: No module named ‘torchaudio’ 问题

摘要 本文聚焦pip install安装torchaudio后(或导入torchaudio时)出现的ModuleNotFoundError: No module named torchaudio报错,该问题核心是Python解释器在当前运行环境的模块查找路径(sys.path)中找不到torchaudio模…

算法题 和相同的二元子数组

930. 和相同的二元子数组 问题描述 给你一个二元数组 nums 和一个整数 goal,请你统计并返回有多少个非空连续子数组的和等于 goal。 示例: 输入: nums [1,0,1,0,1], goal 2 输出: 4 解释: 有4个满足要求的子数组: [1,0,1], [1,0,1,0], [0,1,0,1], [1,0…

【毕业设计】基于深度学习卷积神经网络天上飞的识别基于python-CNN深度学习卷积神经网络天上飞的识别

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

计算机毕业设计springboot财务管理系统 基于SpringBoot的企业财务一体化运营平台 SpringBoot驱动的智能记账与资金管控系统

计算机毕业设计springboot财务管理系统(配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。手工做账、Excel满天飞、审批靠签字,月底关账夜夜通宵?把凭证、发票…

AI学习笔记整理(45)——大模型数据读取技术与模型部署

数据读取技术 大模型中的数据读取技术涉及从多样化数据源高效获取和加载数据,是模型训练与推理的基础环节。以下从数据源类型、关键技术方法及工具实践等方面进行说明。 ‌数据源类型与采集方法:‌ 大模型训练数据主要来源于结构化与非结构化数据源。结…

计算机深度学习毕设实战-基于python-CNN机器学习卷积神经网络对蔬菜识别基于python-CNN卷积神经网络对蔬菜识别

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

江苏硕晟LIMS:全力响应资质认定政策,打造生态环境监测信息管理典范

政策背景与核心要求当下,生态环境监测作为生态治理的核心支撑,其重要性愈发凸显。检验检测机构资质认定生态环境监测机构知识库所提出的各项要求,已成为规范行业发展、保障监测质量的关键准则,其中第十七条更是针对监测机构使用信…